Morsecode: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
 
(8 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 128: Zeile 128:
[[Datei:Zeichnung Prototyp.jpg|mini|links|Abb. 03: Prototyp Zeichnung]]
[[Datei:Zeichnung Prototyp.jpg|mini|links|Abb. 03: Prototyp Zeichnung]]


<br>
<br>
<br>
<br>
<br>
<br>
Zeile 153: Zeile 155:
'''Detaillierter Technischer Systementwurf'''
'''Detaillierter Technischer Systementwurf'''
<br>
<br>
 
In diesem Abschnitt wird die geplante technische Umsetzung der Hardware aufgezeigt.
 
<br>
 
Die LEDs sollen über eine Schaltung gesteuert werden (vgl. Abbildung 4). Die Spule repräsentiert dabei den Hall-Sensor, da dieser in TinkerCAD nicht darstellbar war. Dabei dient der Hall-Sensor als Eingangssignal. Sobald dieser einen Magneten detektiert (vgl. Abschnitt Anforderungen) wird ein Signal an den Arudino weitergegeben.
 
Der Arduino verarbeitet dieses Signal anschließend und startet der Software entsprechend die Blinksequenzen an den LEDs. Zunächst blinkt die erste LED und sobald die Sequenz durchgelaufen ist, beginnt die zweite LED. Sobald alle vier LEDs
 
ihre Sequenz abgespielt haben blinken alle LEDs gleichzeitig um das Ende zu signalisieren. Die Sequenzen repräsentieren die Zahlen, die notwendig sind, um das Zahlenschloss des nächsten Rätsels öffnen zu können.
<br>
Dieser Ablauf ist in Abbildung 5 zu sehen.




Zeile 177: Zeile 181:




[[Datei:Detaillierter Technischer Systementwurf.jpg|mini|links|Abb. 04: Technischer Systementwurf]]
[[Datei:Detaillierter Technischer Systementwurf.jpg|mini|links|Abb. 05: Technischer Systementwurf]]
<br>
<br>
<br>
<br>
<br>
<br>
<br>
Zeile 183: Zeile 190:
<br>
<br>
<br>
<br>


== FQA ==
== FQA ==
Zeile 201: Zeile 207:


== Umsetzung (HW/SW) ==
== Umsetzung (HW/SW) ==
<br>
[[Datei:Morsecode Programm.jpg|mini|links|Abb. 06: Voraussichtlicher Programm Ablaufplan]]
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>


== Komponententest ==
== Komponententest ==

Aktuelle Version vom 10. Oktober 2024, 20:10 Uhr

Autor: Tim Hane und Philipp Wahl
Betreuer: Prof. Schneider


Einleitung

In dem Projekt gilt es eine Reihe von Rätseln zu lösen, doch Vorsicht, bei allen arbeiten Sie gegen die Zeit, denn sie haben nur fünf Minuten für jedes Rätsel. Um das Rätsel „Morsecode“ zu lösen, reicht es nicht einfach nur scharf nach zu denken. Achtet auf Hilfsmittel, die Ihr in den vorherigen Rätseln erlangen könnt, vielleicht helfen euch diese ja weiter? Kennen Sie den Morsecode? Eine altertümliche Weise Buchstaben und Zahlen zu ermitteln. Seien Sie aufmerksam, denn es kann auch sein, dass Sie vier Morsecodes auf einmal übersetzen müssen. Tipp: Gemeinsam aufmerksam sein, denn als Team ist man stark. Freuen sie sich das „Morsecode“ Rätsel, als kleinen Teil des gesamten großen zu lösen!


Schwierigkeitsstufe

Das Rätsel ist in der Schwierigkeitsstufe Mittel einzuordnen.


Anforderungen

Tabelle 1: Anforderungen an das Morsecode-Rätsel
ID Inhalt Prüfbarkeit Prio Ersteller Datum Geprüft von Datum
1 Arduino mit Breadboard, LEDs, Magnetsensor als Hardware nutzen. Sichtprüfung ob Hardware genutzt wurde. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
2 Das Rätsel darf nicht die Größe eines Schuhkartons überschreiten. Größe nachmessen. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
3 Das System muss einen Magneten erkennen können. Signal des Sensors überprüfen. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
4 Die LEDs müssen in verschieden Frequenzen blinken können. LEDs in verschiedenen Frequenzen ansteuern. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
5 LED 1 steht für die erste Zahl des Morsecodes. Ausgegeben Code mit Morsetabelle überprüfen. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
6 LED 2 steht für die zweite Zahl des Morsecodes. Ausgegeben Code mit Morsetabelle überprüfen. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
7 LED 3 steht für die dritte Zahl des Morsecodes. Ausgegeben Code mit Morsetabelle überprüfen. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
8 LED 4 steht für die vierte Zahl des Morsecodes. Ausgegeben Code mit Morsetabelle überprüfen. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
9 Die Software muss mit Simulink erstellt werden. Sichtprüfung der Softwaredatei. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
10 Nach erkennen des Magnets wird der Morsecode in Form von optischen Signalen abgespielt. Sichtprüfung und Kontrolle der Übereinstimmung des Morsecodes. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
11 Das System muss 5 Minuten zählen können.. Überprüfung durch stoppen der Zeit. 1 Tim Hane 10.10.2024 Philipp Wahl 09.10.2024
12 Nach Ablauf der 5 Minuten blinken alle LEDs dreimal gleichzeitig. Optische Überprüfung des blinken des LEDs. 1 Tim Hane 10.10.2024 Philipp Wahl 09.10.2024

Funktionaler Systementwurf/Technischer Systementwurf

Tabelle 2: Materialliste
Nr. Anz. Beschreibung
1 1 Funduino Arduino UNO
2 1 Hall-Sensor
3 4 RGB-LEDs
4 ? Widerstände
5 ? Leitungen
6 1 Breadboard
7 1 Spannungsversorgung/Netzteil
8 1 Magnet
9 1 Gehäuse (ggf. aus 3D-Druck)

Technischer/Funktionaler Systementwurf

Übersicht des technischen und funktionalen Systementwurfs

Um diese Rätselstufe absolvieren zu können, wird der Magnet aus einem vorherigen Rätsel benötigt. Aus dem vorherigen Rätsel entnimmt man außerdem eine Morsecode-Tabelle (siehe Weblinks) um den Morsecode nach NATO Standard zu entschlüsseln. Mit diesem Magneten wird ein Hall-Sensor (Magnetsensor) betätigt. Das Signal des Sensors startet eine Reihe von RGB-LEDs. Diese zeigen einen Morsecode an, welcher in Zahlen übersetzt werden muss. Um ein Zahlenschloss des nächsten Rätsels öffnen zu können wird dieser Zahlencode benötigt. Wie in Abbildung eins zu sehen ist, soll der Arduino inklusive Sensoren und LEDs mit Breadboard in einer ggf. 3D gedruckten Box befinden. Von oben solle eine Plexiglas Scheibe die Box verschließen. Diese dient dazu die LEDs zu sehen und den Rest der Technik. Außerdem erhöht sie die Wartungsfreundlichkeit, da diese Scheibe geschraubt ist. In Abbildung zwei erkennt man den Ablauf nach dem EVA Prinzip. Die Eingabe des Systems ist die Erkennung des Magnet mit Hilfe des Hall-Sensor (Magnetsensor). Der Ardunio erkennt das Signal und Verarbeitet es, sodass er die vier LEDs mit den zuvor programmierten Morsecode ansteuert. Diese vier LEDs geben in oben angegebener Reihenfolge als Ausgabe den Morsecode aus, welcher die Lösung für das Nächste Rätsel ist. In Abbildung eins ist ein grobes Beispiel eines fertigen Morsecodes Rätsel zu erkennen.

Abb. 01: Virtueller Systementwurf

















Detaillierter Funktionaler Systementwurf
Der folgende Absatz beschreibt detailliert die geplante Umsetzung des Morsecode Rätsels. Außerdem ist die geplante Funktion erkennbar.
Im unteren Teil der Abbildung erkennt man den Aufbau der Hardware des Projekts. Dieser besteht aus dem Arduino, den LEDs und dem Magnetsensor. Der Magnetsensor erkennt, wie in Abbildung zwei zu erkennen ist den Magneten und gibt somit ein Signal an den Arduino weiter. Dieser verarbeitet das Signal und kontrolliert ob der Magnet noch in der Nähe des Sensors ist. Falls dies der Fall ist, startet die Software den zuvor programmierten Morsecode. Dieser Morsecode wird durch die 4 LEDs optisch ausgegeben. Gleichzeitig zählt die Software die Zeit, denn nach fünf Minuten endet das Rätsel des Morsecodes.
In Abbildung drei erkennt man das Gehäuse in dem sich das Rätsel befinden wird. Von oben wird eine Plexiglasscheibe aufgeschraubt, damit die interessierten Spieler die Technik des Morsecode Rätsel sehen können. In den den vier Ecken, die in der Draufsicht zu sehen sind, wird jeweils ein Gewinde geschnitten um die Plexiglasscheibe zu verschrauben. Im laufe des Projekts, wird eine CAD-Zeichnung des Gehäuses erstellt um es mit einem 3D-Drucker drucken zu können.


Abb. 02: Funktionaler Systementwurf












Abb. 03: Prototyp Zeichnung

























Detaillierter Technischer Systementwurf
In diesem Abschnitt wird die geplante technische Umsetzung der Hardware aufgezeigt.
Die LEDs sollen über eine Schaltung gesteuert werden (vgl. Abbildung 4). Die Spule repräsentiert dabei den Hall-Sensor, da dieser in TinkerCAD nicht darstellbar war. Dabei dient der Hall-Sensor als Eingangssignal. Sobald dieser einen Magneten detektiert (vgl. Abschnitt Anforderungen) wird ein Signal an den Arudino weitergegeben. Der Arduino verarbeitet dieses Signal anschließend und startet der Software entsprechend die Blinksequenzen an den LEDs. Zunächst blinkt die erste LED und sobald die Sequenz durchgelaufen ist, beginnt die zweite LED. Sobald alle vier LEDs ihre Sequenz abgespielt haben blinken alle LEDs gleichzeitig um das Ende zu signalisieren. Die Sequenzen repräsentieren die Zahlen, die notwendig sind, um das Zahlenschloss des nächsten Rätsels öffnen zu können.
Dieser Ablauf ist in Abbildung 5 zu sehen.


Abb. 04: Arduino Verkabelung
















Abb. 05: Technischer Systementwurf









FQA

Frage: Wo ist der Morsetaster?
Antwort: Es gibt keinen Morsetaster, der Morsecode wird ausgegeben, sobald der Magnetsensor den Magnet erkennt.
Frage: Über welche Strecke wird das Morsesignal übertragen?
Antwort: Das Morsesignal wird über keine Strecke übertragen, die LEDs werden direkt von dem Arduino angesteuert und blinken darauf hin.
Frage: Wie wird das Morsesignal ausgegeben?
Antwort: Das Morsesignal wird mit den vier LEDs ausgegeben, also optisch.

Komponentenspezifikation

Umsetzung (HW/SW)


Abb. 06: Voraussichtlicher Programm Ablaufplan

























Komponententest

Ergebnis

Zusammenfassung

Lessons Learned

Projektunterlagen

Projektplan

Projektdurchführung

YouTube Video

Weblinks

|Morsecode Tabelle: |[1]

Literatur


→ zurück zur Übersicht: WS 24/25: Escape Game