Diskussion:JetRacer: Spurführung mit künstlicher Intelligenz: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
(65 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt) | |||
Zeile 3: | Zeile 3: | ||
! # !! Termin !! Planung für die Woche !! Fortschritt | ! # !! Termin !! Planung für die Woche !! Fortschritt | ||
|- | |- | ||
| 1 || 12.06.2024- | | 1 || 12.06.2024- 19.06.2024 || | ||
* Safety briefing from Mr Marc Ebmeyer's laboratories | |||
* Familiarization with the existing frame work | |||
* Familiarize with the existing system using the wiki article. Gantt chart | |||
* Handing over the keys to Marc Ebmeyer's laboratories | |||
|| | |||
*Make Research on the topic | |||
*Draft a timeline for the project. | |||
|- | |||
| 2 || 20.06.2024-26.06.2024 || | |||
* Build the Jetracer | * Build the Jetracer | ||
* Setup | * Setup and Flash Nvidia OS | ||
* Connect JetRacer to local WLAN | * Connect JetRacer to local WLAN | ||
* Setup Headless control of jetracer | * Setup Headless control of jetracer | ||
|| | || | ||
*Errors and Crashes on the OS (details on Errors and solutions) | |||
*Find the optimal OS for the jet racer | |||
*Optimization of the AI for the circuit, the controller (e.g. PD controller) in the laboratory Autonomous systems (speed, robustness). | |||
|- | |||
| 3 || 26.06.2024 - 05.07.2024 || | |||
* Fixing, debuging errors and testing different Flashversions of the JetRacer | |||
* Teach the JetRacer automated driving | |||
* Steering JetRacer with Gamepad | |||
* Teaching Jetracer interactive_regression | |||
|| | |||
*Make Research on Matlab, Deep learning and ROS | |||
*Document Errors | |||
|- | |||
| 4 || 05.07.2024 - 26.07.2024 || | |||
* Link Jetracer to MATLAB | |||
* Install and check prerequisite for the jetracer like: CUDA, Cudnn, TensorRT | |||
* Reinstall CUDA 10.2, CuDNN and SDL1.2 Paths | |||
* Attempt to programme Jetracer using MATLAB: | |||
#Image recognition | |||
#Line following | |||
|| | |||
*Document Errors + Solutions (E.g. Incompatible GPU, Missing Environment Variables paths like: CUDA_PATH and NVIDIA_CUDNN) | |||
*Speak with other student working on Autonome Spurführung mit einem JetRacer ROS AI Robot | |||
*Update the Professor by Email for Feedback | |||
|- | |||
| 6 || 29.07.2024 - || | |||
* Programme Jetracer using ROS2 | |||
* Evaluation of the advantages and disadvantages of the programming environments. | |||
|| | |||
* Successfully install and run ROS on jetracer | |||
* Recreate Alexnet Example on ROS image classification with GPU coder | |||
|- | |||
| 7 || 12.08.2024 || | |||
* Easy start without ROS: Run Image detection on GPU with Professor's assistance | |||
*[https://de.mathworks.com/videos/deploying-a-deep-learning-network-on-nvidia-jetson-using-gpu-coder-1506357891312.html Deploying a Deep Learning Network on NVIDIA Jetson Using GPU Coder] | |||
* [https://de.mathworks.com/matlabcentral/fileexchange/64534-getting-started-with-matlab-simulink-and-ros?s_tid=ta_fx_results Getting Started with MATLAB, Simulink, and ROS] | |||
|- | |||
| 8 || 19.08.2024 || | |||
* Use the Game controller to steer | |||
|| | |||
<span style="color:red">Dokumentieren Sie bitte hier Ihren Fortschritt.</span> | <span style="color:red">Dokumentieren Sie bitte hier Ihren Fortschritt.</span> | ||
|- | |- | ||
| | | 9 || 26.08.2024 || | ||
* | |||
* Programme and teach Jetracer using Matlab and Simulink | |||
* Understand the Libraries used in JupytrLab | |||
|| | |||
* Working on previous Task | |||
|- | |||
| 10 || 04.09.2024 || | |||
* Discussion of subject for the bachelorthesis. | |||
* Drive the JetRacer in the right lane counterclockwise with the gamepad controller. Limit the speed via Software to a maximum (e. g. 1 m/s). | |||
* Take a video while driving a lap with MATLAB® using a MATLAB®-script. | |||
* Load the pretrained NN. | |||
* Train the pretrained NN with MATLAB® with a MATLAB®-App (GUI) by clicking the desired path in the images. | |||
* Use classic lane tracking algorithms to teach the NN automatically. | |||
*Write a PD-contoller that uses the NN to drive in the right lane. Program this in MATLAB® and let it run on the JetRacer-GPU using GPU Coder. | |||
*Goal: the car should drive autonomously several laps in the right lane as fast as possible. | |||
|| | |||
* Student choosed a name fot the bachelorthesis. | |||
* Provide debug option to adjust speed(Throttle) of jetracer to a maximum (e. g. 1 m/s) only on matlab. | |||
* | |||
|- | |||
| 11 || 09.09.2024 - 13.09.2024 || | |||
* Student did not attend the meeting. | |||
* Please cancle the meeting if you are not coming. | |||
* Drive the JetRacer in the right lane counterclockwise with the gamepad controller. Limit the speed via Software to a maximum (e. g. 1 m/s) wit Professor's assistance. | |||
* Take a video while driving a lap with MATLAB® using a MATLAB®-script. | |||
* Load the pretrained NN. | |||
|| | |||
* Successfully Drive the JetRacer in the right lane counterclockwise with the gamepad controller on matlab. Hard code the speed Limit via Software to a maximum (e. g. 1 m/s). | |||
* Successfully took a video while driving a lap with MATLAB<sup>®</sup> using a MATLAB<sup>®</sup>-script. | |||
* Load the pretrained NN. | |||
* Attempt to train the pretrained NN with MATLAB® with a MATLAB<sup>®</sup>-App (GUI) by clicking the desired path in the images. | |||
* Documented all my work on wiki platform | |||
|- | |||
| 12 || 16.09.2024 - 20.09.2024 || | |||
* Use classic lane tracking algorithms to teach the NN automatically. | |||
*Write a PD-contoller that uses the NN to drive in the right lane. Program this in MATLAB® and let it run on the JetRacer-GPU using GPU Coder. | |||
*Goal: the car should drive autonomously several laps in the right lane as fast as possible. | |||
|| | |||
Send professor recorded video online | |||
|- | |||
| 13 || 21.09.2024 || | |||
Student did not appear to the weekly appointment. | |||
Further research on how to train jetracer | |||
|| | |||
Feedback from professor to use hshl gpt for advance research on how to train a NN | |||
|- | |||
| 14 || 30.09.2024 || | |||
Asking hshl gpt on how to train a NN with the video input from jetracer | |||
|| | |||
Training jetracer based on the researches | |||
Uning alternative method(using gamepad to train the jetracer frame by frame with linear image processing method) | |||
|- | |||
| 15 || 07.1.2024 || | |||
Show professor my work progress on NN traning and approche to teach jetracer with controller instead of mouse(Clicking each desirable path on the frame) | |||
|| | |||
*Testing the jetracer steering and develop PID control | |||
|- | |||
| 16 || 14.10.2024 || | |||
*Testing jetracer to complete a complete lap on the right lane | |||
*Recieved feedback from professor to train jetracer to get both input from controller and camera | |||
|| | |||
*Training the jetracer to get both input from controller and camera | |||
*Documenting all work progress | |||
|- | |||
| 17 || 21.10.2024 || | |||
*Programming jetracer to get input from both video and controller | |||
*Testing and debugging | |||
*Documentation feedback | |||
|| | |||
*Meeting with professor | |||
*Documenting all work progress | |||
|- | |||
| 18 || 28.10.2024 || | |||
*Training NN with new inputs from the jetracer (controller and camera) | |||
|| | |||
* | |||
*Documenting all work progress | |||
|- | |||
| 19 || 21.10.2024 || | |||
*Programming jetracer to get input from both video and controller(steering angle) | |||
*Testing and debugging | |||
*Documentation feedback | |||
|| | |||
*Meeting with professor | |||
*Documenting all work progress | |||
|- | |||
| 20 || 04.11.2024 || | |||
*Testing NN with both inputs from steering angle and camera | |||
|| | |||
* | |||
*Documenting all work progress | |||
|} | |||
== Errors and Solutions == | |||
{| class="wikitable" | |||
|- | |||
! # !! Dates !! Error Descriptions !! Solutions | |||
|- | |||
| 1 || 12.06.2024- 05.07.2024 || | |||
* Build the Jetracer | |||
* Setup Integrated Nvidia OS | |||
* Connect JetRacer to local WLAN | |||
* Setup Headless control of jetracer | |||
* Teach the JetRacer automated driving | * Teach the JetRacer automated driving | ||
* Steering JetRacer with Gamepad | * Steering JetRacer with Gamepad | ||
* Teaching Jetracer interactive_regression | * Teaching Jetracer interactive_regression | ||
* Testing different Flashversions of the JetRacer | |||
|| | |||
<span style="color:red">Dokumentieren Sie bitte hier Ihren Fortschritt.</span> | |||
|- | |||
| || * jetbot-043_nano-4gb-jp45.zip | |||
|| | |||
# Warning!! this is for Jetbot, not Jetracer. | |||
# Jetracer cannot detect SD-card | |||
# Connot lunch Nvidia OS because HMI Screen always dark and Jetson Nano turns on but doesn’t boot | |||
|| | |||
|| | |||
<span style="color:red">Dokumentieren Sie bitte hier Ihren Fortschritt.</span> | <span style="color:red">Dokumentieren Sie bitte hier Ihren Fortschritt.</span> | ||
|- | |||
| || * jetson-nano-jp461-sd-card-image.zip(Jetson-nano developer kit) || | |||
# No build in Jetracer packages like: basic_motion, teleoperation, road_following etc | |||
# Incompatible with Jetracer and gives error : jetson nano Adafruit-Blinka requires Python '>=3.7.0' but the running Python is 3.6.9 | |||
# Incompatible with Jetracer and gives error :No matching distribution found for Adafruit-Blinka>=7.0.0 (from adafruit-circuitpython-servokit) | |||
# Cannot run "sudo nvpmodel -m1" and shows nvpmodel not found || | |||
|- | |- | ||
| 2 || 08.07.2024 - 02. | | || * jetcard_nano-4gb-jp451.zip (Jetpack4.5.1) || | ||
# Working but no build in Jetracer packages like: teleoperation, road_following etc | |||
# Solution is to use github repository: https://github.com/NVIDIA-AI-IOT/jetracer to clone the teleoperation, road_following etc | |||
|| <span style="color:red">Dokumentieren Sie bitte hier Ihren Fortschritt.</span> | |||
|- | |||
| || * jetrace.zip (Jetpack4.5) || | |||
# Incompatible with Jetracer and gives error :ValueError: No I2C device at address: 0x60 (error comes from step 5 of https://www.waveshare.com/wiki/JetRacer_AI_Kit. do not immplement it for pro versions ) | |||
# only interactive_regression package works with no error | |||
# Solution is to use github repository: https://github.com/NVIDIA-AI-IOT/jetracer to clone the basic_movement, teleoperation, road_following etc | |||
# Can't connect to SSH header | |||
|| <span style="color:red">Dokumentieren Sie bitte hier Ihren Fortschritt.</span> | |||
|- | |||
| 2 || 08.07.2024 - 02.09.2024 || | |||
* Research for resources and links on how to programme Jetracer using MATLAB/ROS2 | * Research for resources and links on how to programme Jetracer using MATLAB/ROS2 | ||
* programme Jetracer using MATLAB | * programme Jetracer using MATLAB | ||
* | * Use of ROS2 to teach the Jetson Nano. | ||
|| | |||
<span style="color:red">Dokumentieren Sie bitte hier Ihren Fortschritt.</span> | |||
|- | |||
| || Cuda 10.2 set path || | |||
|| | |||
|- | |||
| || dpkg: error processing package nvidia-l4t-bootloader || || | |||
https://forums.developer.nvidia.com/t/solution-dpkg-error-processing-package-nvidia-l4t-bootloader-configure/208627 | |||
```Code: | |||
sudo mv /var/lib/dpkg/info/ /var/lib/dpkg/backup/ | |||
sudo mkdir /var/lib/dpkg/info/ | |||
``` | |||
Next update repos and force install . | |||
```Code: | |||
sudo apt-get update | |||
sudo apt-get install -f | |||
``` | |||
Move the new structure dpkg/info to old info | |||
```Code: | |||
sudo mv /var/lib/dpkg/info/* /var/lib/dpkg/backup/ | |||
``` | |||
Remove the new dpkg structure folder and back the old | |||
```Code: | |||
sudo rm -rf /var/lib/dpkg/info | |||
sudo mv /var/lib/dpkg/backup/ /var/lib/dpkg/info/ | |||
``` | |||
resources: https://elinux.org/Jetson/Installing_CUDA | |||
|- | |||
| || Nvcc not Found || | |||
|| | |||
- **Edit `.bashrc`:** | |||
Since `vim` and `nano` are unavailable, use `vi` if it's installed: | |||
``Code: | |||
vi ~/.bashrc | |||
``` | |||
- **Clean Up Environment Variables:** | |||
Update the `.bashrc` file to remove duplicates and ensure only one set of `PATH` and `LD_LIBRARY_PATH` entries: | |||
```Code: | |||
# Add CUDA bin & library paths | |||
export PATH=/usr/local/cuda-10.2/bin:$PATH | |||
export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64:$LD_LIBRARY_PATH | |||
``` | |||
- **Save and Exit:** | |||
- In `vi`, press `i` to enter insert mode. | |||
- Make your changes. | |||
- Press `Esc`, then type `:wq` and press `Enter` to save and exit. | |||
- **Source `.bashrc`:** | |||
Code: | |||
source ~/.bashrc | |||
|- | |||
|- | |||
| || Install Cudnn || | |||
[[Datei:Cudnn error.jpg|mini]] | |||
|| | || | ||
<span style="color:red">Dokumentieren Sie bitte hier Ihren Fortschritt.</span> | <span style="color:red">Dokumentieren Sie bitte hier Ihren Fortschritt.</span> | ||
|- | |||
|- | |||
| || SDL 1.2 installation || | |||
[[Datei:Screenshot (2).png|mini]] | |||
|| | |||
1. **`nvcc`**: Ensure CUDA is correctly installed and its path is added to your `.bashrc` file. | |||
2. **SDL 1.2**: Install the development libraries for SDL 1.2 on your system. You can typically do this with: | |||
```code: | |||
sudo apt-get install libsdl1.2-dev | |||
``` | |||
|- | |||
| || No publick key(update error) || | |||
The following signatures couldn't be verified because the public key is not available: NO_PUBKEY A4B469963BF863CC | |||
Reading package lists... Done | |||
W: GPG error: http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 InRelease: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY A4B469963BF863CC | |||
E: The repository 'http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 InRelease' is not signed. | |||
N: Updating from such a repository can't be done securely, and is therefore disabled by default. | |||
N: See apt-secure(8) manpage for repository creation and user configuration details. | |||
|| | |||
The error message indicates that the GPG key for the NVIDIA CUDA repository is missing. To resolve this, you can manually add the key: | |||
1. **Add the missing key**: | |||
```Code: | |||
sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub | |||
``` | |||
2. **Update the package list again**: | |||
```Code: | |||
sudo apt-get update | |||
``` | |||
This should fix the GPG error and allow you to update the repositories. | |||
|- | |||
|} | |} | ||
----- | |||
Structure of the thesis | |||
# Introduction | |||
## Task overview | |||
## Gantt-Chart | |||
## Organisation Plan/Outline | |||
Where do I find the solutuins to the tasks. | |||
# Theoretical Background | |||
# Solution Way/Alternatives | |||
# Solution/Result | |||
# Conclusion | |||
## Discussion of the results | |||
## Outlook | |||
Literature/source | |||
Attachments/SVN Links |
Aktuelle Version vom 5. November 2024, 13:13 Uhr
# | Termin | Planung für die Woche | Fortschritt |
---|---|---|---|
1 | 12.06.2024- 19.06.2024 |
|
|
2 | 20.06.2024-26.06.2024 |
|
|
3 | 26.06.2024 - 05.07.2024 |
|
|
4 | 05.07.2024 - 26.07.2024 |
|
|
6 | 29.07.2024 - |
|
|
7 | 12.08.2024 |
| |
8 | 19.08.2024 |
|
Dokumentieren Sie bitte hier Ihren Fortschritt. |
9 | 26.08.2024 |
|
|
10 | 04.09.2024 |
|
|
11 | 09.09.2024 - 13.09.2024 |
|
|
12 | 16.09.2024 - 20.09.2024 |
|
Send professor recorded video online |
13 | 21.09.2024 |
Student did not appear to the weekly appointment. Further research on how to train jetracer |
Feedback from professor to use hshl gpt for advance research on how to train a NN |
14 | 30.09.2024 |
Asking hshl gpt on how to train a NN with the video input from jetracer |
Training jetracer based on the researches Uning alternative method(using gamepad to train the jetracer frame by frame with linear image processing method) |
15 | 07.1.2024 |
Show professor my work progress on NN traning and approche to teach jetracer with controller instead of mouse(Clicking each desirable path on the frame) |
|
16 | 14.10.2024 |
|
|
17 | 21.10.2024 |
|
|
18 | 28.10.2024 |
|
|
19 | 21.10.2024 |
|
|
20 | 04.11.2024 |
|
|
Errors and Solutions
# | Dates | Error Descriptions | Solutions |
---|---|---|---|
1 | 12.06.2024- 05.07.2024 |
|
Dokumentieren Sie bitte hier Ihren Fortschritt. |
* jetbot-043_nano-4gb-jp45.zip |
|
Dokumentieren Sie bitte hier Ihren Fortschritt. | |
* jetson-nano-jp461-sd-card-image.zip(Jetson-nano developer kit) |
| ||
* jetcard_nano-4gb-jp451.zip (Jetpack4.5.1) |
|
Dokumentieren Sie bitte hier Ihren Fortschritt.
| |
* jetrace.zip (Jetpack4.5) |
|
Dokumentieren Sie bitte hier Ihren Fortschritt. | |
2 | 08.07.2024 - 02.09.2024 |
|
Dokumentieren Sie bitte hier Ihren Fortschritt. |
Cuda 10.2 set path | |||
dpkg: error processing package nvidia-l4t-bootloader |
```Code: sudo mv /var/lib/dpkg/info/ /var/lib/dpkg/backup/ sudo mkdir /var/lib/dpkg/info/ ``` Next update repos and force install . ```Code: sudo apt-get update sudo apt-get install -f ``` Move the new structure dpkg/info to old info ```Code: sudo mv /var/lib/dpkg/info/* /var/lib/dpkg/backup/ ``` Remove the new dpkg structure folder and back the old ```Code: sudo rm -rf /var/lib/dpkg/info sudo mv /var/lib/dpkg/backup/ /var/lib/dpkg/info/ ``` resources: https://elinux.org/Jetson/Installing_CUDA | ||
Nvcc not Found |
- **Edit `.bashrc`:** Since `vim` and `nano` are unavailable, use `vi` if it's installed: ``Code: vi ~/.bashrc ``` - **Clean Up Environment Variables:** Update the `.bashrc` file to remove duplicates and ensure only one set of `PATH` and `LD_LIBRARY_PATH` entries: ```Code: # Add CUDA bin & library paths export PATH=/usr/local/cuda-10.2/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64:$LD_LIBRARY_PATH ``` - **Save and Exit:** - In `vi`, press `i` to enter insert mode. - Make your changes. - Press `Esc`, then type `:wq` and press `Enter` to save and exit. - **Source `.bashrc`:** Code: source ~/.bashrc | ||
Install Cudnn |
Dokumentieren Sie bitte hier Ihren Fortschritt. | ||
SDL 1.2 installation |
1. **`nvcc`**: Ensure CUDA is correctly installed and its path is added to your `.bashrc` file. 2. **SDL 1.2**: Install the development libraries for SDL 1.2 on your system. You can typically do this with: ```code: sudo apt-get install libsdl1.2-dev ``` | ||
No publick key(update error) |
The following signatures couldn't be verified because the public key is not available: NO_PUBKEY A4B469963BF863CC Reading package lists... Done W: GPG error: http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 InRelease: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY A4B469963BF863CC E: The repository 'http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 InRelease' is not signed. N: Updating from such a repository can't be done securely, and is therefore disabled by default. N: See apt-secure(8) manpage for repository creation and user configuration details. |
The error message indicates that the GPG key for the NVIDIA CUDA repository is missing. To resolve this, you can manually add the key: 1. **Add the missing key**: ```Code: sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub ``` 2. **Update the package list again**: ```Code: sudo apt-get update ``` This should fix the GPG error and allow you to update the repositories. |
Structure of the thesis
- Introduction
- Task overview
- Gantt-Chart
- Organisation Plan/Outline
Where do I find the solutuins to the tasks.
- Theoretical Background
- Solution Way/Alternatives
- Solution/Result
- Conclusion
- Discussion of the results
- Outlook
Literature/source Attachments/SVN Links