AMR 2022: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
|||
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt) | |||
Zeile 55: | Zeile 55: | ||
<gallery> | <gallery> | ||
Datei:Motor Hallsensor Anschluss.png|Hall-Sensor-Anschluss | Datei:Motor Hallsensor Anschluss.png|Hall-Sensor-Anschluss | ||
Datei:LRP Hallsensor Adapterplatine.png | |||
</gallery> | </gallery> | ||
'''Überprüfen''' | '''Überprüfen''' | ||
Zeile 831: | Zeile 831: | ||
=== Verkabelung === | === Verkabelung === | ||
→ zurück zum Hauptartikel: [[Praktikum_SDE|Praktikum SDE]] |
Aktuelle Version vom 1. Dezember 2023, 14:07 Uhr
Dieses Artikel befasst sich mit dem Aufbau des autonomen mobilen Roboters AMR 2022 an der HSHL.
Systemübersicht
Konstruktion
steuerung der automatischen Wagen Auswahl in Simulink
Pinbelegung
Alle Pins des J26_DIGITAL_Anschlusses sind auf GND gelegt.
Wagen Bezeichnung | definierter Pin | Potential wenn ausgewählt |
---|---|---|
alter Wagen | Pin D10_18 | 5V |
weißer Wagen 2023 | Pin D10_16 | 5V |
schwarzer Wagen 2023 | Pin D10_10 | 5V |
Fahrgestell
Aktuatorenschalter
Der Aktuatorenschalter schaltet den Fahrtenregler und Lenkservo aus, sodass keine Fahrt- und Lenkbewegung möglich ist.
Stellung | Funktion von hinten auf den Wagen schauend |
---|---|
Links | Regler ein |
Mitte | Regler aus |
Rechts | Regler aus |
Motor
Anschlüsse
Der Motor verfügt über zwei Anschlüsse. Der erste Anschluss dient zur Steuerung der drei Phasen des Motors A, B und C seitens des Fahrtenregler. Da diese Leitungen hohe Ströme führen, ist äußerste Vorsicht bei der Umgang mit denen geboten. des weiteren sind diese ansclüsse kurz zu halten um Störungen zu vermeiden. Der zweite Anschluss ist der Sensoranschluss. Hier überträgt der Motor mit hilfe von Hallsensoren am Stator den Stand des Rotors an dem Fahrtenregler, um die Transisitor Brücken des Reglers im passenden Momentan zu schalten, sodass sich für den Motor an den Phasen A B C ein Drehfeld ergibt, welches den Rotor des Motors kontinuierlich beschleunigt oder bremst.
Hall-Sensor
Der Sensoranschluss des Motors wird in Form eines 6-poligen JST ZH-Buchse mit Rastermaß 1,5mm bereitgestellt. Die Signale sind wie folgend belegt:
-
Hall-Sensor-Anschluss
-
Überprüfen
Pin | Farbe | Funktion | |
---|---|---|---|
1 | Schwarz | GND | |
2 | Orange | Phase A | |
3 | Weiß | Phase B | |
4 | Grün | Phase C | |
5 | Blau | NC | |
6 | Rot | NC |
Bei etwa der maximalen Geschwindigkeit ergeben sich Motorphasen der Periodendauer von ca. 10,2ms. Die Mindestzeit zwischen zwei Flanker der Hall-Phasen beträgt dabei ca. 1,5ms.
-
Hall-Signale des Motors bei maximaler Geschwindigkeit
Anschluss an Adapterplatine
Die Hall-Signale vom Motor werden an J8_Hall wie folgt an der Adapterplatine angeschlossen:
Funktion | Anschluss auf Adapterplatine J8_Hall | Anschluss auf Adapterplatine J9_Hall_in | Anschluss auf DS1104 |
---|---|---|---|
Hall A | 6 | 1 & 2 | P1A_33_IO_02_Hall_A |
Hall B | 5 | 3 & 4 | PIB_33_IO_03_Hall_B |
Hall C | 4 | 5 & 6 | PIA_32_IO_04_Hall_C |
+5Vlinear | 3 | - | - |
+5Vlinear | 2 | - | - |
Digital GND | 1 | - | D_GND -PIA01, -PIA17, -PIA24, -PIB01, -PIB17, -PIB24, |
Des Weiteren werden die Hall-Signale über eine XOR-Kombinationslogik bearbeitet und zur Geschwindigkeitsermittlung genutzt. Weitere Informationen dazu sind verfügbar unter: Signalverarbeitung und Geschwindigkeitsermittlung.
Damit die Hall-Signale auch von Kombinationslogik erfasst werden können, müssen diese auf der Adapterplatine über Jumper zu Kombinationschip weitergeleitet werden. Auf dem Wannenstecker Steckplatz J9_Hall_in müssen jeweils die gegenüberliegenden Pins miteinander verbunden werden. Also 1 mit 2, 3 mit 4 und 5 mit 6. Analog dazu muss der Ausgang der Kombinationslogik mit der DS1104-Karte verbunden werden. Dazu müssen auf Wannenstecker J10 Pin 1 mit 2 und Pin 3 mit 4 verbunden werden.
'Achtung Design Fehler P1B_26_IO_17_INTER4_HALL_LOGIK_INVERT muss mit Kabel verbunden werden an Pin3 von J10 Hall_out'
Die Hall-Signale sowie das kombinierte Signal sind wie folgt auf der DS1104 verfügbar:
Funktion | Anschluss auf DS1104 |
---|---|
Hall A | IO2 |
Hall B | IO3 |
Hall C | IO4 |
Kombi-Hall-Signal | IO19 |
Invertiertes Kombi-Hall-Signal | IO17 |
Empfängermodul
Diese Beschreibung beschränkt sich zunächst auf dem Fernbedienungsempfänger Futaba F143F 40MHz FM. Nichtsdestotrotz können die hier enthaltene Informationen auf andere Empfänger für die gleiche Anwendung übertragen werden.
Der Fernbedienungsempfänger empfängt die Radiosignale der Fernbedienung und gibt Steuersignale zum Lenkservo und Fahrtenregler ab.
Anschlüsse
Die Stromversorgung des Empfängers erfolgt über den Fahrtenregler, der wiederum die Versorgung von Fahrakku entnimmt. Gemessen ist ein Versorgungspegel von 5V.
Die Versorgung des Empfängers kann auch über den BAT- oder B/C-Anschluss erfolgen. Zu beachten ist, dass die Masse- und Versorgungsanschlüsse jeweils über alle Steckplätze kurzgeschlossen sind. An den Anschlüssen CH1 - CH3 können 3 Ausgänge angeschlossen werden. Hier werden der Fahrtenregler an CH1 und der Lenkservo an CH3 angeschlossen. CH1 ist mit einem Failsafe ausgestattet, fällt der Empfang aus wird der Motor abgeschaltet, bzw. in eine definierte Position gebracht.
-
Skizze des Fernbedienungs-empfängers Futaba F143F
Lenk-Signal
Das Lenksignal wird als PWM-Signal vom Empfänger an dem Lenkservo gegeben. Das Signal ist wie folgend beschaffen:
Parameter | Wert |
---|---|
Amplitude | 3 V |
Periodendauer | 18,50 ms |
Frequenz | 54 Hz |
Pulsweite Lenkung 0-Position | 1,52 ms |
Tastgrad Lenkung 0-Position | 8,22% |
Pulsweite Lenkung Rechts | 1,10 ms |
Tastgrad Lenkung Rechts | 5,94% |
Pulsweite Lenkung Links | 1,92 ms |
Tastgrad Lenkung Links | 10,38% |
-
Periodendauer des PWM-Lenksignals
-
Amplitudenmessung des PWM-Lenksignals
-
Pulsweite bei Lenkwinkel = 0
-
Pulsweite bei Rechtsauschlag
-
Pulsweite bei Linksauschlag
Gas-Signal
Ähnlich wie das Lenksignal wird das Gassignal in einem PWM-Signal moduliert. Das Signal hat folgende Eigenschaften:
Parameter | Wert |
---|---|
Amplitude | 2,7 V |
Periodendauer | 18,50 ms |
Frequenz | 54 Hz |
Pulsweite bei Pedal 0-Position | 1,50 ms |
Tastgrad Pedal 0-Position | 8,11 % |
Pulsweite Vollgas Vorwärts | 1,93 ms |
Tastgrad Vollgas Vorwärts | 10,43 % |
Pulsweite Vollgas Rückwärts | 1,11 ms |
Tastgrad Vollgas Rückwärts | 6 % |
-
Periodendauer des PWM-Gassignals
-
Amplitudenmessung des PWM-Gassignals
-
Pulsweite bei Pedalstellung = 0
-
Pulsweite bei Vollgas in Vorwärtsrichtung
-
Pulsweite bei Vollgas in Rückwärtsrichtung
Signalschwankungen
Die oben dargestellten Pulsbreiten der Signale schwanken bei konstanter Betätigung der Fernbedienung um ca. 65µs.
-
Schwankung der Pulsbreite der Fernbedienungssignale
Anschluss des Empfängermoduls an Adapterplatine
Die Fahr- und Lenksignale der Fernbedienung werden an der Adapterplatine auf Stecker J6_Empfänger angeschlossen, der wie folgt belegt ist:
Funktion | Pin auf J6_Empfänger | Anschluss auf DS1104 |
---|---|---|
GND | 1 & 4 | D_GND -PIA01, -PIA17, -PIA24, -PIB01, -PIB17, -PIB24, |
Lenksignal der Fernbedienung | 3 | PIA_09_SCAP1_RC-in_Signal_LS |
Fahrsignal der Fernbedienung | 5 | PIA_08_SCAP2_RC-in_Signal_FR |
+5V | 2 & 5 |
Funktion | Pin auf J7_Servo_Regler | Anschluss auf DS1104 |
---|---|---|
GND | 1 & 4 | D_GND -PIA01, -PIA17, -PIA24, -PIB01, -PIB17, -PIB24, |
Lenksignal der Fernbedienung | 3 | PIB_12_STPWM_RC-out_Signal_LS |
Fahrsignal der Fernbedienung | 5 | PIB_16_SPWM7_RC-out_Signal_FR |
+5V | 2 | |
+5V | 5 |
Fahrtenregler und Lenkservo
Fahrtenregler
Der Fahrtenregler hat folgende Eingangsverkabelung:
Pin | Farbe | Funktion | |
---|---|---|---|
1 | Schwarz | GND | |
2 | Rot | Vcc | |
3 | Weiß | PWM-Eingang |
Lenkservo
Der Lenkservo hat folgende Eingangsverkabelung:
Pin | Farbe | Funktion | |
---|---|---|---|
1 | Braun | GND | |
2 | Rot | Vcc | |
3 | Weiß | PWM-Eingang |
Verkabelung
-
Blockdiagramm der Komponenten und Verkabelung im Fahrgestell
Karosserie
Adapterplatine
Versorgt wird die Adapterplatine
-
Skizze der Adapterplatine
-
Anschlüsse der Adapterplatine
-
Stecker J1 zur Spannungsversorgung der Adapterplatine mit 5V
Funktion | Pinnummer auf Stecker | Anschluss an DS1104 |
---|---|---|
GN | ||
Funktion | Pinnummer auf Stecker | Anschluss an DS1104 |
---|---|---|
G | ||
-
Stecker zur Messung der Spannung am Fahrakku
-
Stecker zur Messung der Spannungen an PC-Akkus
Anschlüsse an der Adapterplatine
NC: Not Connected, Pin nicht angeschlossen bzw. ohne Funktion.
Stecker auf Adapterplatine | Funktion | Pin Auf Stecker | Pin-Funktion | Pin auf dSPACE DS1104 |
---|---|---|---|---|
-
Jumper zu Auswahl der Verstärkung des Z-Signals des Gyrosensors 1- oder 4-Fach
-
Jumper zu Auswahl der Verstärkung des X-Signals des Gyrosensors 1- oder 4-Fach
Rechner
dSPACE DS1104 RCP
J17_Kamera_Power
VRmagic D2 OEM-Version Spannungsversorgung mit Vcc=5V von der Adapterplatine (J17) und Anschluss an dem Rechner über die Ethernet-Schnittstelle
Funktion | Pins auf J17 |
---|---|
+5V-Versorgung der Kamera vom PC +5V | 2 |
GND | 1 |
LIDAR
Der Lidar wird per USB an den PC angebunden.
IR-Sensoren
Es sind 4 Infrarotsensoren zur Abstandsmessung am Fahrzeug angebracht. Weitere Information zum Sensor können hier entnommen werden. Die Sensoren werden wie folgt angeschlossen:
Sensorposition | Sensornummer | Anschluss auf Adapterplatine | Anschluss auf DS1104 |
---|---|---|---|
Hinten Rechts | J19_IR_HR | P1A-44_ADCH7 | |
Seite Hinten | J22_IR_H | P1B-46_ADCH6 | |
Hinten Links | J20_IR_HL | P1B-44 ADCH8 | |
Seite Vorne | J21_IR_V | P1A-46_ADCH5 |
Dabei haben alle Sensoren folgende Verdrahtung J19, J20, J21, J22:
Funktion | Pinnummer |
---|---|
Analog GND | 1 |
+5V linear | 2 |
Analogausgang des Sensors | 3 |
-
Skizze Sensorpositionen Infrarotsensoren
-
Anschlüsse der Infrarotsensoren auf der Adapterplatine
Lichter
Fahrzeugbeleuchtung
-
Anschluss der Lichter an Adapterplatine
Funktion | Anschluss auf
Adapterplatine J20 |
Anschluss auf DS1104 |
---|---|---|
GND | ||
Blinker Rechts | ||
Blinker Links | ||
Bremse | ||
Rückfahrlicht | ||
Fahrlicht |
Anschlussplatine der Beleuchtung
Eingriffsbeleuchtung / Blaue LED
Die blaue LED zu Signalisierung des Fernbedienungseingriff wird über Stecker J3 angeschlossen.
Funktion | Pin auf J3 | Anschluss auf DS1104 |
---|---|---|
Vcc | 1 | |
GND | 2 | |
Steuersignal der Diode | 3 | IO15 |
-
Anschluss der blauen LED an Adapterplatine
freie Steckplätze auf der Adapterplatine
J24_Incrementalgeber
An den Incrementalgeber eingängen lassen sich endlos drehende Incrementalgeber anschließen. Herausgeführt ist nur Kanal 1
Funktion | Pin auf J24 | Anschluss auf DS1104 |
---|---|---|
D_Gnd | 1 | D_Gnd |
+5V von DS1104 Karte Datenblatt beachten belastbarkeit S100 (Hardware installation configuration) max. 500mA für alle Pins zusammen. | P1A_10_VCC_+5V_ | |
P1A_18_IDX_1 invertiert | 3 | P1A_18_IDX_1_Invert |
IDX_1 | 4 | P1A_19_IDX_1 |
PHI90_1 invertiert | 5 | P1A_20_PHI90_1_Invert |
PHI90_1 | 6 | P1A_21_PHI90_1 |
PHI0_1 invertiert | 7 | P1A_22_PHI0_1_ |
PHI0_1 | 8 | P1A_23_PHI0_1 |
J25_PWM
Funktion | Pin auf J24 | Anschluss auf DS1104 |
---|---|---|
D_Gnd | 1 | D_Gnd |
SPWM2 | 2 | |
SPWM3 | 3 | |
SPWM4_ | 4 | |
ST1_PWM | 5 | |
SCAP3 | 6 | |
SCAP3 invert | 7 | |
SCAP4 | 8 | |
+5V | 9 | |
+3,3V | 10 |
J26_Digital
Funktion | Pin auf J26_Digital | Anschluss auf DS1104 |
---|---|---|
D_Gnd | 1 | D_Gnd |
DIO_0 | 2 | |
DIO_6 | 3 | |
DIO_7 | 4 | |
DIO_8 | 5 | |
DIO_10 | 6 | |
DIO_16 | 7 | |
DIO_18 | 8 | |
+3,3V | 9 | - |
+5V | 10 | - |
J29_Analog
Funktion | Pin auf J29_Analog | Anschluss auf DS1104 |
---|---|---|
A_Gnd | 1 & 3 & 5 & 7 & 9 | A_Gnd |
DACH_1 | 2 | |
DACH_2 | 4 | |
DACH_3 | 6 | |
DACH_4 | 8 | |
DACH_5 | 10 |
J27_SPI
Funktion | Pin auf J27_SPI & J28_SPI | Anschluss auf DS1104 |
---|---|---|
D_Gnd | 1 & 8 | D_Gnd |
+5V linear | 7 | |
3,3V linear | 6 | - |
MISO | 5 | |
MOSI | 4 | |
STE | 3 | |
SCLK | 7 |
Powerpanel
Taster
Programmtaster
Es sind 4 Programmtaster vorhanden. Damit können verschiedene Programmmodi geschaltet werden. Die Taster sind an der Adapterplatine an Stecker J angeschlossen.
Funktion | Pin auf J | Anschluss auf DS1104 |
---|---|---|
GND | ||
Taster 1 | ||
Taster 2 | ||
Taster 3 | ||
Taster 4 |
-
Anschluss der Taster an der Adapterplatine
Schaltung und Layout
Aufladen der Akkus
Verkabelung
→ zurück zum Hauptartikel: Praktikum SDE