Morsecode: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
 
(14 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 68: Zeile 68:
|3  || 4 || RGB-LEDs || https://www.reichelt.de/rgb-led-5-mm-bedrahtet-4-pin-rt-gn-bl-8000-mcd-25--led-ll-5-8000rgb-p156358.html?PROVID=2788&gad_source=1&gclid=EAIaIQobChMIn_q6kIyGiQMVEZGDBx04vxwBEAYYBiABEgI_w_D_BwE
|3  || 4 || RGB-LEDs || https://www.reichelt.de/rgb-led-5-mm-bedrahtet-4-pin-rt-gn-bl-8000-mcd-25--led-ll-5-8000rgb-p156358.html?PROVID=2788&gad_source=1&gclid=EAIaIQobChMIn_q6kIyGiQMVEZGDBx04vxwBEAYYBiABEgI_w_D_BwE
|-
|-
|4  || 1 || Widerstände || Wird von der Hochschule gestellt.
|4  || div. || Widerstände || Wird von der Hochschule gestellt.
|-
|-
|5  || 1 || Leitungen || Wird von der Hochschule gestellt.
|5  || div. || Leitungen || Wird von der Hochschule gestellt.
|-
|-
|6  || 1 || Breadboard || https://www.reichelt.de/experimentier-slide-steckboard-300-100-kontakte-steckboard-s4-p177331.html?PROVID=2788&gad_source=1&gclid=EAIaIQobChMIovaElY2GiQMVIEFBAh03TjT1EAQYBSABEgJsPPD_BwE
|6  || 1 || Breadboard || https://www.reichelt.de/experimentier-slide-steckboard-300-100-kontakte-steckboard-s4-p177331.html?PROVID=2788&gad_source=1&gclid=EAIaIQobChMIovaElY2GiQMVIEFBAh03TjT1EAQYBSABEgJsPPD_BwE
Zeile 78: Zeile 78:
|8  || 1 || Magnet || https://www.reichelt.de/magnet--4-0mm-laenge-19mm-magnet-4-0-p11170.html?PROVID=2788&gad_source=1&gclid=EAIaIQobChMI4vSVwI2GiQMVPzwGAB19NDhdEAQYAyABEgIkrPD_BwE
|8  || 1 || Magnet || https://www.reichelt.de/magnet--4-0mm-laenge-19mm-magnet-4-0-p11170.html?PROVID=2788&gad_source=1&gclid=EAIaIQobChMI4vSVwI2GiQMVPzwGAB19NDhdEAQYAyABEgIkrPD_BwE
|-
|-
|9  || 1 || Gehäuse (ggf. aus 3D-Druck) || Kein Link
|9  || 1 || Gehäuse (ggf. aus 3D-Druck) || Wird von der Hochschule gestellt.
|-
|-
|10 || 1 || M4 Schrauben || Wird von der Hochschule gestellt.
|10 || 4 || M4 Schrauben || Wird von der Hochschule gestellt.
|-
|-
|11 || 1 || Acrylglasscheibe || https://www.conrad.de/de/p/acrylglasscheibe-l-x-b-100-mm-x-200-mm-materialstaerke-3-mm-transparent-1-st-530816.html
|11 || 4 || M3 Schrauben || Wird von der Hochschule gestellt.
|-
|12 || 1 || Acrylglasscheibe || https://www.conrad.de/de/p/acrylglasscheibe-l-x-b-100-mm-x-200-mm-materialstaerke-3-mm-transparent-1-st-530816.html
|-
|13 || 1 || Kabeldurchführung || https://www.reichelt.de/kabelverschraubung-pg-9-3-5-8-mm-schwarz-ip68-lapp-53015210-p158577.html?PROVID=2788&gad_source=1&gbraid=0AAAAADwnxtYI9wc7G3JBMyWlCmVfhLuGB
|-
|14 || div. || Klebesockel || https://www.reichelt.de/klebesockel-13x13-mb2apt-a-schwarz-ht-151-02243-p341110.html?&trstct=pol_0&nbc=1
|-
|15 || div. || Kabelbinder || Wird von der Hochschule gestellt.
|-
|-
|}
|}
Zeile 133: Zeile 141:
<br>
<br>


[[Datei:Zeichnung Prototyp.jpg|mini|links|Abb. 03: Prototyp Zeichnung]]
[[Datei:Finale Zeichnung.JPG|mini|links|Abb. 03: CAD-Zeichnung]]


<br>
<br>
Zeile 156: Zeile 164:
<br>
<br>
<br>
<br>
'''Detaillierter Technischer Systementwurf'''
<br>
<br>
In diesem Abschnitt wird die geplante technische Umsetzung der Hardware aufgezeigt.
<br>
<br>
Die LEDs sollen über eine Schaltung gesteuert werden (vgl. Abbildung 4). Der Temperatursensor repräsentiert dabei den Hall-Sensor, da dieser in TinkerCAD nicht darstellbar ist. Außerdem ist aufgrund der begrenzten Möglichkeiten in TinkerCAD die Spannungsversorgung nicht dargestellt, in diesem Projekt wird sie über den Rundsteckeranschluss am Arduino erfolgen. Die Schaltung wurde mittels Breadboard aufgebaut, um einerseits Kosten zu sparen, andererseits aber auch einen flexiblen Schaltungsaufbau gewährleisten zu können. Außerdem ist bei Nutzung eines Breadboards der Leitungsverlauf und somit auch der Verlauf der Signale deutlich besser zu erkennen. Die vier RDB-LEDs werden je nach Farbanteil unterschiedlich angeschlossen, welches sehr gut durch das Breadboard sichtbar wird. In Abbildung vier ist zu erkennen, dass der Hall-Magnetsensor über das Breadboard vom Arduino mit 5 Volt Spannung versorgt wird. Das Signal des Magnetsensors wird über einen Digitalen In und Output des Arduinos verwendet. Dieser Arduino steuert den grünen Anteil der RGB-LEDs einzeln jeweils über einen 150 Ohm Widerstand an. Dies ist wichtig, damit der passende Betriebsstrom (vgl. Multisim Simulation) anliegt und der grüne Anteil der LEDs einzeln blinken kann. Der rote Anteil der RGB-LEDs wird über einen 40 Ohm Widerstand parallel geschaltet und angesteuert, da diese LEDs in rot nur alle zusammen blinken müssen. Der Vorteil der Parallelschaltung liegt darin, dass sowohl Leitungen, Widerstände, als auch Digitalports des Arduinos eingespart werden können. Außerdem trägt es zur Übersichtlichkeit der Schaltung bei.


[[Datei:CAD-Zeichnung Geghäuse.jpg|mini|links|Abb. 04: CAD-Zeichnung]]
<br>
<br>
 
<br>
 
[[Datei:Arduino Verkabelung.jpg|mini|links|Abb. 04: Arduino Verkabelung]]
<br>
<br>
<br>
<br>
Zeile 175: Zeile 191:




'''Detaillierter Technischer Systementwurf'''
[[Datei:Schaltungssimulation MTR 2.jpg|mini|links|Abb. 05: Schaltungssimulation in Multisim]]
<br>
<br>
In diesem Abschnitt wird die geplante technische Umsetzung der Hardware aufgezeigt.
<br>
<br>
<br>
Die LEDs sollen über eine Schaltung gesteuert werden (vgl. Abbildung 5). Die Spule repräsentiert dabei den Hall-Sensor, da dieser in TinkerCAD nicht darstellbar war. Dabei dient der Hall-Sensor als Eingangssignal. Sobald dieser einen Magneten detektiert (vgl. Abschnitt Anforderungen) wird ein Signal an den Arudino weitergegeben.
Der Arduino verarbeitet dieses Signal anschließend und startet der Software entsprechend die Blinksequenzen an den LEDs. Zunächst blinkt die erste LED und sobald die Sequenz durchgelaufen ist, beginnt die zweite LED. Sobald alle vier LEDs
ihre Sequenz abgespielt haben blinken alle LEDs gleichzeitig um das Ende zu signalisieren. Die Sequenzen repräsentieren die Zahlen, die notwendig sind, um das Zahlenschloss des nächsten Rätsels öffnen zu können.
<br>  
<br>  
Dieser Ablauf ist in Abbildung 6 zu sehen.
[[Datei:Arduino Verkabelung.jpg|mini|links|Abb. 05: Arduino Verkabelung]]
<br>
<br>
<br>
<br>
<br>
Zeile 197: Zeile 205:
<br>
<br>
<br>
<br>
In Abbildung sechs ist der Ablauf des Rätsels symbolisch dargestellt. Der genaue Plan der Signale ist in Abbildung sieben zu erkennen. Dabei dient der Hall-Sensor als Eingangssignal. Sobald dieser einen Magneten detektiert (vgl. Abschnitt Anforderungen) wird ein digitales Eingangssignal an den Arudino weitergegeben.
Der Arduino verarbeitet dieses Signal anschließend und startet der Software entsprechend die Blinksequenzen an den LEDs. In grün sind die digitalen Ausgangssignale zur Ansteuerung des grünen Anteils der RGB-LEDs dargestellt. Das rote Ausgangssignal zeigt die Ansteuerung des roten Anteils der RGB-LEDs. Dieser rote Anteil wird parallel geschaltet, weshalb nur ein Ausgangssignal gezeigt ist. Zunächst blinkt die erste LED einen Morsecode, sobald die Sequenz durchgelaufen ist, beginnt die zweite LED. Nach dem durchlauf aller vier Morsecodes blinken alle LEDs gleichzeitig dreimal in rot um das Ende zu signalisieren. Die vier Morsecode Sequenzen repräsentieren die Zahlen, die notwendig sind, um das Zahlenschloss des nächsten Rätsels öffnen zu können.
<br>
[[Datei:Detaillierter Technischer Systementwurf.jpg|mini|links|Abb. 06: Technischer Systementwurf]]
<br>
<br>
<br>
<br>
Zeile 203: Zeile 218:




[[Datei:Detaillierter Technischer Systementwurf.jpg|mini|links|Abb. 06: Technischer Systementwurf]]
[[Datei:Signale des Morsecode Rätsels.jpg|mini|links|Abb. 07: Signalflussplan]]
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
Zeile 230: Zeile 250:
== Umsetzung (HW/SW) ==
== Umsetzung (HW/SW) ==
<br>
<br>
[[Datei:PAP Hauptprogramm MTR 2.png|mini|links|alternativtext=Abb. 07: Voraussichtliches Hauptprogramm Ablaufplan]]
[[Datei:PAP Hauptprogramm MTR 2.png|mini|links|Abb. 08: Voraussichtliches Hauptprogramm Ablaufplan]]
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
Zeile 238: Zeile 263:
<br>
<br>
<br>
<br>
[[Datei:PAP NF1.png|mini|links|Abb. 09: Voraussichtliche Nebenfunktion "Morsecodefunktion" Ablaufplan]]
<br>
<br>
<br>
<br>
Zeile 243: Zeile 269:
<br>
<br>
<br>
<br>
[[Datei:PAP NF1.png|mini|links|alternativtext=Abb. 08: Voraussichtliche Nebenfunktion "Morsecodefunktion" Ablaufplan]]
<br>
<br>
<br>
<br>
Zeile 274: Zeile 299:
<br>
<br>
<br>
<br>
<br>
[[Datei:PAP NF 2.png|mini|links|Abb. 10: Voraussichtliche Nebenfunktion "Zeitfunktion" Ablaufplan]]
<br>
<br>
<br>
<br>
Zeile 280: Zeile 307:
<br>
<br>
<br>
<br>
[[Datei:PAP NF 2.png|mini|links|alternativtext=Abb. 09: Voraussichtliche Nebenfunktion "Zeitfunktion" Ablaufplan]]
<br>
<br>
<br>
<br>
Zeile 304: Zeile 330:


== Komponententest ==
== Komponententest ==
'''Tabelle 3: Getestete Anforderungen'''
{| class="wikitable"
|+ style = "text-align: left"|
! style="font-weight: bold;" | ID
! style="font-weight: bold;" | Beschreibung
! style="font-weight: bold;" | Bereich
! style="font-weight: bold;" | Autor
! style="font-weight: bold;" | Überprüft am
! style="font-weight: bold;" | Status
|-
| 1
| Arduino mit Breadboard, LEDs und Magnetsensor wird als Hardware verwendet.
| Hardware
| Tim Hane & Philipp Wahl
| xxx
| ?
|-
| 2
| Das Rätsel darf die Größe eines Schuhkartons nicht überschreiten.
| Hardware
| Tim Hane & Philipp Wahl
| xxx
| ?
|-
| 3
| Das System muss einen Magneten erkennen können.
| Software
| Tim Hane & Philipp Wahl
| xxx
| ?
|-
| 4
| Die LEDs müssen in verschiedenen Frequenzen blinken können.
| Hardware
| Tim Hane & Philipp Wahl
| xxx
| ?
|-
| 5
| Die LED 1 steht für die erste Zahl des Morsecodes.
| Hardware
| Tim Hane & Philipp Wahl
| xxx
| ?
|-
| 6
| Die LED 2 steht für die erste Zahl des Morsecodes.
| Hardware
| Tim Hane & Philipp Wahl
| xxx
| ?
|-
| 7
| Die LED 3 steht für die erste Zahl des Morsecodes.
| Hardware
| Tim Hane & Philipp Wahl
| xxx
| ?
|-
| 8
| Die LED 4 steht für die erste Zahl des Morsecodes.
| Hardware
| Tim Hane & Philipp Wahl
| xxx
| ?
|-
| 9
| Die Software muss mit Simulink erstellt werden.
| Software
| Tim Hane & Philipp Wahl
| xxx
| ?
|-
| 10
| Nach erkennen des Magnets wird der Morsecode in optischer Form ausgegeben.
| Hardware
| Tim Hane & Philipp Wahl
| xxx
| ?
|-
| 11
| Das System muss 5 Minuten zählen können.
| Software
| Tim Hane & Philipp Wahl
| xxx
| ?
|-
| 12
| Nach Ablauf der 5 Minuten blinken alle LEDs dreimal gleichzeitig in Rot.
| Hardware
| Tim Hane & Philipp Wahl
| xxx
| ?
|-
| 13
| Die Ergebnisse müssen in SVN gesichert werden.
| Software
| Tim Hane & Philipp Wahl
| xxx
| ?
|}


== Ergebnis ==
== Ergebnis ==
Zeile 314: Zeile 443:
=== Projektdurchführung ===
=== Projektdurchführung ===


== YouTube Video ==


== Weblinks ==
== Weblinks ==

Aktuelle Version vom 17. November 2024, 11:32 Uhr

Autor: Tim Hane und Philipp Wahl
Betreuer: Prof. Schneider


Einleitung

In dem Projekt gilt es eine Reihe von Rätseln zu lösen, doch Vorsicht, bei allen arbeiten Sie gegen die Zeit, denn sie haben nur fünf Minuten für jedes Rätsel. Um das Rätsel „Morsecode“ zu lösen, reicht es nicht einfach nur scharf nach zu denken. Achtet auf Hilfsmittel, die Ihr in den vorherigen Rätseln erlangen könnt, vielleicht helfen euch diese ja weiter? Kennen Sie den Morsecode? Eine altertümliche Weise Buchstaben und Zahlen zu ermitteln. Seien Sie aufmerksam, denn es kann auch sein, dass Sie vier Morsecodes auf einmal übersetzen müssen. Tipp: Gemeinsam aufmerksam sein, denn als Team ist man stark. Freuen sie sich das „Morsecode“ Rätsel, als kleinen Teil des gesamten großen zu lösen!


Schwierigkeitsstufe

Das Rätsel ist in der Schwierigkeitsstufe Mittel einzuordnen.
Der mechatronische Aufbau hat den Schwierigkeitsgrad simpel.

Anforderungen

Tabelle 1: Anforderungen an das Morsecode-Rätsel
ID Inhalt Prüfbarkeit Prio Ersteller Datum Geprüft von Datum
1 Arduino mit Breadboard, LEDs, Magnetsensor als Hardware nutzen. Sichtprüfung ob Hardware genutzt wurde. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
2 Das Rätsel darf nicht die Größe eines Schuhkartons überschreiten. Größe nachmessen. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
3 Das System muss einen Magneten erkennen können. Signal des Sensors überprüfen. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
4 Die LEDs müssen in verschieden Frequenzen blinken können. LEDs in verschiedenen Frequenzen ansteuern. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
5 LED 1 steht für die erste Zahl des Morsecodes. Ausgegeben Code mit Morsetabelle überprüfen. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
6 LED 2 steht für die zweite Zahl des Morsecodes. Ausgegeben Code mit Morsetabelle überprüfen. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
7 LED 3 steht für die dritte Zahl des Morsecodes. Ausgegeben Code mit Morsetabelle überprüfen. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
8 LED 4 steht für die vierte Zahl des Morsecodes. Ausgegeben Code mit Morsetabelle überprüfen. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
9 Die Software muss mit Simulink erstellt werden. Sichtprüfung der Softwaredatei. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
10 Nach erkennen des Magnets wird der Morsecode in Form von optischen Signalen abgespielt. Sichtprüfung und Kontrolle der Übereinstimmung des Morsecodes. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
11 Das System muss 5 Minuten zählen können.. Überprüfung durch stoppen der Zeit. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
12 Nach Ablauf der 5 Minuten blinken alle LEDs dreimal gleichzeitig. Optische Überprüfung des blinken des LEDs. 1 Tim Hane 10.10.2024 Philipp Wahl 10.10.2024
13 Ergebnisse müssen in SVN gesichert werden. Überprüfung der Ergebnisse in SVN. 2 Tim Hane 11.10.2024 Philipp Wahl 11.10.2024

Funktionaler Systementwurf/Technischer Systementwurf

Tabelle 2: Bill of materials (BOM)
Nr. Anz. Beschreibung Link
1 1 Funduino Arduino UNO https://www.reichelt.de/arduino-uno-rev-3-dip-variante-atmega328-usb-arduino-uno-dip-p154902.html?&trstct=vrt_pdn&nbc=1
2 1 Hall-Sensor https://www.reichelt.de/arduino-hall-magnet-sensor-ard-sen-hall2-p282516.html?PROVID=2788&gad_source=1&gclid=EAIaIQobChMInoPCgYyGiQMVuj8GAB0FnQ4uEAQYASABEgKOB_D_BwE
3 4 RGB-LEDs https://www.reichelt.de/rgb-led-5-mm-bedrahtet-4-pin-rt-gn-bl-8000-mcd-25--led-ll-5-8000rgb-p156358.html?PROVID=2788&gad_source=1&gclid=EAIaIQobChMIn_q6kIyGiQMVEZGDBx04vxwBEAYYBiABEgI_w_D_BwE
4 div. Widerstände Wird von der Hochschule gestellt.
5 div. Leitungen Wird von der Hochschule gestellt.
6 1 Breadboard https://www.reichelt.de/experimentier-slide-steckboard-300-100-kontakte-steckboard-s4-p177331.html?PROVID=2788&gad_source=1&gclid=EAIaIQobChMIovaElY2GiQMVIEFBAh03TjT1EAQYBSABEgJsPPD_BwE
7 1 Spannungsversorgung/Netzteil https://www.reichelt.de/steckernetzteil-12-w-5-v-2-4-a-ea1012ahes501-p293278.html?PROVID=2788&gad_source=1&gclid=EAIaIQobChMIsoffrY2GiQMVErdaBR1WUQYjEAQYAiABEgLhn_D_BwE
8 1 Magnet https://www.reichelt.de/magnet--4-0mm-laenge-19mm-magnet-4-0-p11170.html?PROVID=2788&gad_source=1&gclid=EAIaIQobChMI4vSVwI2GiQMVPzwGAB19NDhdEAQYAyABEgIkrPD_BwE
9 1 Gehäuse (ggf. aus 3D-Druck) Wird von der Hochschule gestellt.
10 4 M4 Schrauben Wird von der Hochschule gestellt.
11 4 M3 Schrauben Wird von der Hochschule gestellt.
12 1 Acrylglasscheibe https://www.conrad.de/de/p/acrylglasscheibe-l-x-b-100-mm-x-200-mm-materialstaerke-3-mm-transparent-1-st-530816.html
13 1 Kabeldurchführung https://www.reichelt.de/kabelverschraubung-pg-9-3-5-8-mm-schwarz-ip68-lapp-53015210-p158577.html?PROVID=2788&gad_source=1&gbraid=0AAAAADwnxtYI9wc7G3JBMyWlCmVfhLuGB
14 div. Klebesockel https://www.reichelt.de/klebesockel-13x13-mb2apt-a-schwarz-ht-151-02243-p341110.html?&trstct=pol_0&nbc=1
15 div. Kabelbinder Wird von der Hochschule gestellt.

Technischer/Funktionaler Systementwurf

Übersicht des technischen und funktionalen Systementwurfs

Um diese Rätselstufe absolvieren zu können, wird der Magnet aus einem vorherigen Rätsel benötigt. Aus dem vorherigen Rätsel entnimmt man außerdem eine Morsecode-Tabelle (siehe Weblinks) um den Morsecode nach NATO Standard zu entschlüsseln. Mit diesem Magneten wird ein Hall-Sensor (Magnetsensor) betätigt. Das Signal des Sensors startet eine Reihe von RGB-LEDs. Diese zeigen einen Morsecode an, welcher in Zahlen übersetzt werden muss. Um ein Zahlenschloss des nächsten Rätsels öffnen zu können wird dieser Zahlencode benötigt. Wie in Abbildung eins zu sehen ist, soll der Arduino inklusive Sensoren und LEDs mit Breadboard in einer ggf. 3D gedruckten Box befinden. Von oben solle eine Plexiglas Scheibe die Box verschließen. Diese dient dazu die LEDs zu sehen und den Rest der Technik. Außerdem erhöht sie die Wartungsfreundlichkeit, da diese Scheibe geschraubt ist. In Abbildung zwei erkennt man den Ablauf nach dem EVA Prinzip. Die Eingabe des Systems ist die Erkennung des Magnet mit Hilfe des Hall-Sensor (Magnetsensor). Der Ardunio erkennt das Signal und Verarbeitet es, sodass er die vier LEDs mit den zuvor programmierten Morsecode ansteuert. Diese vier LEDs geben in oben angegebener Reihenfolge als Ausgabe den Morsecode aus, welcher die Lösung für das Nächste Rätsel ist. In Abbildung eins ist ein grobes Beispiel eines fertigen Morsecodes Rätsel zu erkennen.

Abb. 01: Virtueller Systementwurf

















Detaillierter Funktionaler Systementwurf
Der folgende Absatz beschreibt detailliert die geplante Umsetzung des Morsecode Rätsels. Außerdem ist die geplante Funktion erkennbar.
Im unteren Teil der Abbildung erkennt man den Aufbau der Hardware des Projekts. Dieser besteht aus dem Arduino, den LEDs und dem Magnetsensor. Der Magnetsensor erkennt, wie in Abbildung zwei zu erkennen ist den Magneten und gibt somit ein Signal an den Arduino weiter. Dieser verarbeitet das Signal und kontrolliert ob der Magnet noch in der Nähe des Sensors ist. Falls dies der Fall ist, startet die Software den zuvor programmierten Morsecode. Dieser Morsecode wird durch die 4 LEDs optisch ausgegeben. Gleichzeitig zählt die Software die Zeit, denn nach fünf Minuten endet das Rätsel des Morsecodes.
In Abbildung drei erkennt man das Gehäuse in dem sich das Rätsel befinden wird. Von oben wird eine Plexiglasscheibe aufgeschraubt, damit die interessierten Spieler die Technik des Morsecode Rätsel sehen können. In den den vier Ecken, die in der Draufsicht zu sehen sind, wird jeweils ein Gewinde geschnitten um die Plexiglasscheibe zu verschrauben. Im laufe des Projekts, wird eine CAD-Zeichnung des Gehäuses erstellt um es mit einem 3D-Drucker drucken zu können.


Abb. 02: Funktionaler Systementwurf












Abb. 03: CAD-Zeichnung
























Detaillierter Technischer Systementwurf
In diesem Abschnitt wird die geplante technische Umsetzung der Hardware aufgezeigt.
Die LEDs sollen über eine Schaltung gesteuert werden (vgl. Abbildung 4). Der Temperatursensor repräsentiert dabei den Hall-Sensor, da dieser in TinkerCAD nicht darstellbar ist. Außerdem ist aufgrund der begrenzten Möglichkeiten in TinkerCAD die Spannungsversorgung nicht dargestellt, in diesem Projekt wird sie über den Rundsteckeranschluss am Arduino erfolgen. Die Schaltung wurde mittels Breadboard aufgebaut, um einerseits Kosten zu sparen, andererseits aber auch einen flexiblen Schaltungsaufbau gewährleisten zu können. Außerdem ist bei Nutzung eines Breadboards der Leitungsverlauf und somit auch der Verlauf der Signale deutlich besser zu erkennen. Die vier RDB-LEDs werden je nach Farbanteil unterschiedlich angeschlossen, welches sehr gut durch das Breadboard sichtbar wird. In Abbildung vier ist zu erkennen, dass der Hall-Magnetsensor über das Breadboard vom Arduino mit 5 Volt Spannung versorgt wird. Das Signal des Magnetsensors wird über einen Digitalen In und Output des Arduinos verwendet. Dieser Arduino steuert den grünen Anteil der RGB-LEDs einzeln jeweils über einen 150 Ohm Widerstand an. Dies ist wichtig, damit der passende Betriebsstrom (vgl. Multisim Simulation) anliegt und der grüne Anteil der LEDs einzeln blinken kann. Der rote Anteil der RGB-LEDs wird über einen 40 Ohm Widerstand parallel geschaltet und angesteuert, da diese LEDs in rot nur alle zusammen blinken müssen. Der Vorteil der Parallelschaltung liegt darin, dass sowohl Leitungen, Widerstände, als auch Digitalports des Arduinos eingespart werden können. Außerdem trägt es zur Übersichtlichkeit der Schaltung bei.



Abb. 04: Arduino Verkabelung













Abb. 05: Schaltungssimulation in Multisim














In Abbildung sechs ist der Ablauf des Rätsels symbolisch dargestellt. Der genaue Plan der Signale ist in Abbildung sieben zu erkennen. Dabei dient der Hall-Sensor als Eingangssignal. Sobald dieser einen Magneten detektiert (vgl. Abschnitt Anforderungen) wird ein digitales Eingangssignal an den Arudino weitergegeben. Der Arduino verarbeitet dieses Signal anschließend und startet der Software entsprechend die Blinksequenzen an den LEDs. In grün sind die digitalen Ausgangssignale zur Ansteuerung des grünen Anteils der RGB-LEDs dargestellt. Das rote Ausgangssignal zeigt die Ansteuerung des roten Anteils der RGB-LEDs. Dieser rote Anteil wird parallel geschaltet, weshalb nur ein Ausgangssignal gezeigt ist. Zunächst blinkt die erste LED einen Morsecode, sobald die Sequenz durchgelaufen ist, beginnt die zweite LED. Nach dem durchlauf aller vier Morsecodes blinken alle LEDs gleichzeitig dreimal in rot um das Ende zu signalisieren. Die vier Morsecode Sequenzen repräsentieren die Zahlen, die notwendig sind, um das Zahlenschloss des nächsten Rätsels öffnen zu können.


Abb. 06: Technischer Systementwurf






Abb. 07: Signalflussplan














FAQ

Frage: Wo ist der Morsetaster?
Antwort: Es gibt keinen Morsetaster, der Morsecode wird ausgegeben, sobald der Magnetsensor den Magnet erkennt.
Frage: Über welche Strecke wird das Morsesignal übertragen?
Antwort: Das Morsesignal wird über keine Strecke übertragen, die LEDs werden direkt von dem Arduino angesteuert und blinken darauf hin.
Frage: Wie wird das Morsesignal ausgegeben?
Antwort: Das Morsesignal wird mit den vier LEDs ausgegeben, also optisch.

Komponentenspezifikation

Umsetzung (HW/SW)


Abb. 08: Voraussichtliches Hauptprogramm Ablaufplan













Abb. 09: Voraussichtliche Nebenfunktion "Morsecodefunktion" Ablaufplan





































Abb. 10: Voraussichtliche Nebenfunktion "Zeitfunktion" Ablaufplan




























Komponententest

Tabelle 3: Getestete Anforderungen

ID Beschreibung Bereich Autor Überprüft am Status
1 Arduino mit Breadboard, LEDs und Magnetsensor wird als Hardware verwendet. Hardware Tim Hane & Philipp Wahl xxx ?
2 Das Rätsel darf die Größe eines Schuhkartons nicht überschreiten. Hardware Tim Hane & Philipp Wahl xxx ?
3 Das System muss einen Magneten erkennen können. Software Tim Hane & Philipp Wahl xxx ?
4 Die LEDs müssen in verschiedenen Frequenzen blinken können. Hardware Tim Hane & Philipp Wahl xxx ?
5 Die LED 1 steht für die erste Zahl des Morsecodes. Hardware Tim Hane & Philipp Wahl xxx ?
6 Die LED 2 steht für die erste Zahl des Morsecodes. Hardware Tim Hane & Philipp Wahl xxx ?
7 Die LED 3 steht für die erste Zahl des Morsecodes. Hardware Tim Hane & Philipp Wahl xxx ?
8 Die LED 4 steht für die erste Zahl des Morsecodes. Hardware Tim Hane & Philipp Wahl xxx ?
9 Die Software muss mit Simulink erstellt werden. Software Tim Hane & Philipp Wahl xxx ?
10 Nach erkennen des Magnets wird der Morsecode in optischer Form ausgegeben. Hardware Tim Hane & Philipp Wahl xxx ?
11 Das System muss 5 Minuten zählen können. Software Tim Hane & Philipp Wahl xxx ?
12 Nach Ablauf der 5 Minuten blinken alle LEDs dreimal gleichzeitig in Rot. Hardware Tim Hane & Philipp Wahl xxx ?
13 Die Ergebnisse müssen in SVN gesichert werden. Software Tim Hane & Philipp Wahl xxx ?

Ergebnis

Zusammenfassung

Lessons Learned

Projektunterlagen

Projektplan

Projektdurchführung

Weblinks

|Morsecode Tabelle: |[1]

Literatur


→ zurück zur Übersicht: WS 24/25: Escape Game