Stopplinien-Verhalten: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
 
(93 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
→ zurück zur Übersicht: [[SDE-Team_2019/20]]<br/>
→ zurück zur Übersicht: [[SDE-Team_2020/21]]<br/>
----
'''Bearbeiter:''' [[Benutzer:Yanick-Christian_Tchenko|Yanick Christian Tchenko]] <br/>
'''Autoren:''' [[Benutzer: Hagen Heuer | Hagen Heuer]], [[Benutzer: Tim Kruse | Tim Kruse]] <br/>
'''Autoren:''' [[Benutzer: Hagen Heuer | Hagen Heuer]], [[Benutzer: Tim Kruse | Tim Kruse]] <br/>
'''Betreuer:''' [[Benutzer:Ulrich_Schneider| Prof. Schneider]]<br/>
'''Bearbeitet:''' [[Benutzer: Daniel Gosedopp | Daniel Gosedopp]], [[Benutzer: Ran Wei | Ran Wei]] <br/>
 
'''Betreuer:''' [[Benutzer:Ulrich_Schneider| Prof. Schneider]], [[Benutzer:Mirekgoebel | Prof. Göbel]]<br/>


== Einleitung ==
== Einleitung ==
 
Ziel ist es, das Verhalten des Fahrzeugs an Stopplinien entsprechend den Anforderungen im Lastenheft zu implementieren. Das Fahrzeug muss nach dem Lastenheft im Falle der Erkennung einer Haltelinie immer langsamer fahren. Befindet sich es an der Stopplinie, so muss es dort stoppen und zwei Sekunden halten. Liegt eine Vorfahrtssituation vor, muss dem Hindernis Vorfahrt gewährt und erst dann weitergefahren werden.
In dieser Aufgabestellung ist die Zielsetzung, das Verhalten des Fahrzeugs an Stopplinien entsprechend den Anforderungen im Lastenheft zu implementieren. Das Fahrzeug muss nach dem Lastenheft im Falle der Erkennung einer Haltelinie immer langsamer fahren. Befindet sich es an der Stopplinie, dann muss es zwei Sekunden halten und anschleißend weiterfahren.


== Anforderungen ==
== Anforderungen ==
Im Lastenheft des Projets Carolo Cup wird die Steuerung des Verhaltens des Fahrzeugs an der Stopplinie genau so wie in der folgenden Abbildung gefordert:<br>
Im Lastenheft des Projekts Carolo Cup wird die Anforderung an das Verhalten des Fahrzeugs an einer Stopplinie in REQ10.2340 festgehalten (s. Abbildung 1).<br>
<gallery mode = "traditional" widths=500px heights=150px>
<gallery mode = "traditional" widths=500px heights=150px>
File:Anforderungen.JPG|Abb. 1: Lastenheft
File:Anforderungen.JPG|<b>Abbildung 1: Lastenheftauszug Stopplinien-Verhalten.</b>
</gallery>
</gallery>


Es entstand demnach das untere Pflichtenheft: <br>
Die Umsetzung der Anforderung ist im Pflichtenheft wie folgt festgehalten:<br>
<gallery mode = "traditional" widths=1250px heights=230px>
<gallery mode = "traditional" widths=1250px heights=230px>
File:Pflichtenheft Heuer Kruse MS2.png|Abb. 2: Pflichtenheft
File:Pflichtenheft Heuer Kruse MS2.png|<b>Abbildung 2: Pflichtenheftauszug zu REQ10.2340.</b>
</gallery>
</gallery>


Zeile 33: Zeile 26:


== Konzept ==
== Konzept ==
Als Basis für die Implementierung diente die vorhandene MATLAB-Funktion für das Verhalten an Stopplinien. Beim Testen dieser Funktion viel unter anderem auf, dass diese nicht lauffähig ist. Außerdem war die Implementierung der Weiterfahrt nach einer Stopplinie fehlerhaft, da das Fahrzeug die vorherige Stopplinie erneut erkennen würde. Daher wurde ein neues Konzept erstellt, in dem Teile der ursprünglichen Idee berücksichtigt wurden. Zunächst werden die externen Ein- und Ausgänge des Moduls definiert:
=== Grundidee ===
Das Modul BSF ermittelt unter anderem die Sollgeschwindigkeit des Fahrzeugs. Dies geschieht entweder auf Basis der Kurvenkrümmung oder wird bei Vorhandensein eines Hindernisses als konstant angenommen. Die Grundidee ist es, die Sollgeschwindigkeit bei Erkennung einer Stopplinie mit einem Faktor (Werte von 0 - 1) zu multiplizieren, also immer weiter zu verringern, bis das Fahrzeug 15cm vor der Linie stillsteht. Der Stillstand soll für zwei Sekunden beibehalten werden. Danach soll das Fahrzeug mit unveränderter Sollgeschwindigkeit weiterfahren (Faktor = 1). Den Verlauf des Faktorwertes zeigt Abb. 3.
<gallery mode = "traditional" widths=500px heights=250px>
File:Konzept des Geschwindigkeitsfaktors.png|<b>Abbildung 3: Verlauf des Geschwindigkeitsbegrenzungsfaktors</b>
</gallery>


Als Basis für die Implementierung diente die vorhandene Matlab-Funktion für das Verhalten an Stoppkreuzungen. Beim Testen dieser Funktion viel unter anderem auf, dass diese nicht lauffähig ist. Außerdem war die Implementierung der Weiterfahrt nach einer Stopplinie fehlerhaft, da das Fahrzeug die vorherige Stopplinie erneut erkennen würde.
Am Anfang ist der Faktor 1, bis eine Stopplinie erkannt wird. Dann verringert er sich kontinuierlich, bis zum Wert 0, sodass das Auto immer langsamer wird und schließlich 15cm vor der Stopplinie zum Stillstand kommt. Hier wird für zwei Sekunden gewartet. Danach wird der Faktor wieder auf 1 gesetzt, sodass wieder auf errechnete Sollgeschwindigkeit beschleunigt wird.


Daher wurde ein neues Konzept erstellt, in dem Teile der ursprünglichen Idee berücksichtigt wurden. Zudem wurde die Matlab-Funktion um weitere Ein- und Ausgänge erweitert.
=== Festlegung von Ein- und Ausgängen ===


Eingänge:
Zur Umsetzung der Funktion werden zunächst die Ein- und Ausgänge festgelegt. Diese zeigt Tab. 1.
*Stopplininenflag
*Stopplinienabstand
*Zykluszahl
*Zustand


Ausgang:
{| class="wikitable" style="margin:auto" style="text-align: center;
*Geschwindigkeitsfaktor
|+ Tabelle 1: Ein- und Ausgangsvariablen
*Zykluszahl
! Art !! Variablenname !! Beschreibung !! Einheit
*Zustand
|-
| Eingang
| SenKam_Stopplinienabstand_f64
| Abstand von Fahrzeugfront zur Stopplinie
| m
|-
| Eingang
| SenKam_Stopplinienflag_bit
| Gesetzt, wenn eine Stopplinie erkannt wird
| -
|-
| Eingang
| Vorfahrtssituation_bit
| Gesetzt, wenn ein Hindernis an der Kreuzung steht.
| -
|-
| Eingang
| T
| Zykluszeit der Simulation
| s
|-
| Ausgang
| BsfVx_Faktor_f64
| Geschwindigkeitsbegrenzungsfaktor, falls Stopplinie erkannt wurde
| -
|}


Der Programmablaufplan des neuen Konzeptes ist im Folgenden erklärt.
=== Programmablauf ===
Das Programm wird als Zustandsautomat realisiert, dessen Zustandsdiagramm Abbildung 3 zeigt.


<gallery mode = "traditional" widths=600px heights=800px>
<gallery mode = "traditional" widths=800px heights=380px>
File:BSF Stopplinienverhalten.png|Abb. 3: Lastenheft
Datei:Stoppverhalen Automat.png|<b>Abb. 3: Progammablaufplan des Stopplinien-Verhaltens.</b>
</gallery>
</gallery>


Zu Beginn werden Variablen eingelesen oder initialisiert. Anschließend erfolgt die Abfrage der einzelnen Cases. Das Programm wird hierbei in drei Cases unterteilt.
Zu Beginn werden Variablen eingelesen und initialisiert. Anschließend erfolgt die Abfrage des Zustands. Das Programm wird hierbei in vier Zustände unterteilt.
 
'''Zustand 1 - Auf Stopplinie warten'''<br>
Im ersten Zustand werden zunächst Variablen an den Ausgang übergeben. Anschließend wird abgefragt, ob das Stopplinienflag 1 ist. Trifft dies zu wird der Zustand auf 2 gesetzt. Wurde keine Stopplinie gefunden, so wird der Zustand nicht gewechselt.


'''Case 1''' (Zustand = 1)<br/>
'''Zustand 2 - Abbremsen nach Stopplinienerkennung'''<br>
Falls das Stopplinienflag nicht gesetzt ist, soll das Fahrzeug weiter fahren und den Case nicht verlassen. Fall ein Stopplinienflag erkannt wurde, soll das Fahrzeug anfangen zu verzögern. Wenn der Abstand zur Stopplinie < 15 cm ist, soll das Fahrzeug stoppen und in den Case 2 wechseln.
In diesem Zustand wird abgebremst. Ist der Stopplinienabstand kleiner als 15cm, werden die Motoren abgeschaltet und der Zustand auf 3 gesetzt.


'''Case 2''' (Zustand = 2)<br/>
'''Zustand 3 - An Stopplinie warten'''<br>
In Case 2 wird zunächst der aktuelle Haltezyklus mit dem vorgegebenen Haltezyklus verglichen. Mit Hilfe dieser Haltezyklen kann die Haltezeit erfasst werden, da die Simulationszeit 0,005 Sekunden beträgt. Solange die Haltezyklen geringer sind wie die vorgegebene Zahl, werden diese um eins addiert und der Case 2 nicht verlassen. Im anderen Fall wird Fahrzeug wieder beschleunigt und es wird in den Case 3 gewechselt.  
In diesem Zustand wird an der Stopplinie gewartet. Liegt keine Vorfahrtssituation vor, beträgt die Wartezeit 2 Sekunden, ansonsten wird solange gewartet, bis das Hindernis die Kreuzung passiert hat.


'''Case 3''' (Zustand = 3)<br/>
'''Zustand 4 - Kreuzung überfahren'''
Im dritten Case wird der Abstand zur Stopplinie abgefragt. Falls dieser größer Null ist, soll das Fahrzeug weiter fahren und den Case nicht verlassen. Falls der Abstand zur Stopplinie Null ist, soll in den Case 1 gewechselt werden und dort auf eine neue Stopplinie reagiert werden.
Hier wird solange gefahren, bis die Stopplinie überquert wurde, der Stopplinienabstand also <= 0 ist. Dies ist nötig, damit die Stopplinie nicht als neue Stopplinie erkannt wird und das Farzeug erneut anhält. Danach wechselt der Automat wieder in den ersten Zustand.


Falls kein Case ausgewählt wurde, soll in den vorherigen Case gewechselt werden und das Fahrzeug weiter fahren.
== Umsetzung und Ergebnis der Simulation ==
Die Implementierung des Algorithmus erfolgt in Simulink als Stateflow Chart. Diese wurde nach dem Zustandsdiagramm aus Abbildung 3 aufgebaut. Der Zustandsautomat besitzt als Eingang den Stopplinienabstand. Die Kamera kann die Stopplinie aber nur bis ca. 52cm vor dem Auto sehen, sodass dieser bei Zufahrt auf die Kreuzung interpoliert werden muss. Dies geschieht im Subsystem "Berechnung_Stopplinienabstand". Um zu prüfen, ob eine Vorfahrtssituation vorliegt, muss auf die LiDAR-Objektliste zugegriffen werden. Das passiert im Subsystem "Überprüfung_Vorfahrtssituation". Im Lastenheft findet sich eine Abbildung, die zeigt, welche Bedingung zur Einleitung einer Vorfahrtssituation erfüllt sein muss. Wenn die Bedingung erfüllt ist, wird das "Vorfahrtssituation_bit" gesetzt.


<gallery mode = "traditional" widths=500px heights=250px>
<gallery mode = "traditional" widths=1100px heights=400px>
File:Konzept.GIF|Abb. 4: Lastenheft
File:Stoppverhalten_Stateflow.png|<b>Abbildung 5: Implementierung der Anhalte- und Vorfahrtlogik.</b>
</gallery>
</gallery>


<gallery mode = "traditional" widths=500px heights=250px>
Das Ergebnis des Stopplinienverhalten wird in der nachfolgenden Abbildung dargestellt.
File:Gewünschte Geschwindigkeit.png|Abb. 4: Verhalten der Geschwindigkeit
 
<gallery mode = "traditional" widths=800px heights=520px>
File:Ergebnis StopplinienverhaltenV2.png|<b>Abbildung 6: Wichtige Variablenwerte beim Test der Funktion.</b>
</gallery>
</gallery>


Ziel ist es das folgende Verhalten, wie in Abbildung 4 zu sehen, zu erreichen. Der Geschwindigkeitsfaktor hat den Wert 1 angenommen und das Fahrzeug fährt mit konstanter Geschwindigkeit. Wird eine Stopplinie erkannt, so soll das Fahrzeug verzögern bis es zum Stillstand kommt. Nach den zwei Sekunden Wartezeit soll das Fahrzeug wieder beschleunigen, weshalb der Geschwindigkeitsfaktor den Wert 1 annimmt.
Im ersten Diagramm ist das Stopplinienflag zu sehen, welches bei Detektion einer Stopplinie auf Eins wechselt.
 
Im zweiten Diagramm ist der dazugehörige Stopplinienabstand zu sehen. Dieser ist solange Null, bis eine Stopplinie erkannt wurde. Die Stopplinie kann ab einem Abstand von einem Meter oder weniger erfasst werden. Am Verlauf ist zudem gut zu erkennen, dass das Fahrzeug beginnt zu verzögern, da der Abstand nicht linear abnimmt. Nach der zweisekündigen Wartezeit beschleunigt das Fahrzeug wieder und der Abstand zur Stopplinie nimmt linear weiter ab. Erreicht dieser Null, so wird die Stopplinie überfahren.
 
Im letzten Diagramm wird die errechnete Sollgeschwindigkeit ausgegeben. Auch an dieser Kurve ist gut zu sehen, dass das Fahrzeug verzögert. Wenn der Abstand 15 cm oder weniger beträgt, werden die Motoren abgeschaltet, da der Faktor auf Null abfällt.


<onlyinclude><div style="clear:{{{{{|safesubst:}}}#switch:{{{1}}}
<onlyinclude><div style="clear:{{{{{|safesubst:}}}#switch:{{{1}}}
Zeile 84: Zeile 117:
}};"></div></onlyinclude>
}};"></div></onlyinclude>


== Umsetzung und Ergebnis der Simulationsumgebung ==
== Unit-Test & Integrations-Test ==
''' Autoren:''' Hagen Heuer, Tim Kruse<br/>
Im Folgenden sind die einzelnen Testfälle für den Unit- und Integrations-Test im Offline- und Online-Modell zu sehen.  
 
Die Umsetzung der Implementierung erfolgt wie bereits erwähnt im Offline-Modell mit Hilfe von Simulink und Matlab c-Code.
 
<gallery mode = "traditional" widths=800px heights=400px>
File:Matlabfunktion Stopplinienverhalten.png|Abb. 5: Matlab-Funktion
</gallery>
 
 
<gallery mode = "traditional" widths=800px heights=520px>
File:Ergebnis Stopplinienverhalten.png|Abb. 6: Ergebnis
</gallery>


==Komponententest ==
'''Offline-Modell: '''
Durch die Eingabe von Parametern konnten folgende Testfälle in der Simulation geprüft werden.


Hier werden die verschiedenen entwickelten Komponente getestet. Die Testergebnisse ergaben nach bestimmten Eingaben die in der unteren Tabelle zu sehenden numerische Resultate.
{| class="wikitable" style="margin:auto" style="text-align: center;
{| class="mw-datatable"
|+ Tabelle 3: Tests für das Stopplinienverhalten in der Simulation.
! style="font-weight: bold;" | ID
! style="font-weight: bold;" | ID
! style="font-weight: bold;" | Testfallbeschreibung
! style="font-weight: bold;" | Testfallbeschreibung
! style="font-weight: bold;" | Eingänge(<code>SenKam_StoplinieAbst_f64</code>, <code>SenKam_StoplinieFlag_bit</code>)
! style="font-weight: bold;" | Eingänge
! style="font-weight: bold;" | Ausgang(<code>BSFVx_Faktor_i8</code>)
! style="font-weight: bold;" | Ausgang
! style="font-weight: bold;" | Erwartetes Ergebnis
! style="font-weight: bold;" | Erwartetes Ergebnis
! style="font-weight: bold;" | Testergebnis
! style="font-weight: bold;" | Testergebnis
Zeile 112: Zeile 135:
|-
|-
| 1
| 1
| Das Fahrzeug fährt normal, wenn keine Stopplinie erkannt wurde.
| Das Fahrzeug fährt mit der vorgegebenen Geschwindigkeit, wenn keine Stopplinie erkannt wurde.
| SenKam_StoplinienFlag_bit = 0,  SenKam_StoplinienAbst_f64 = 0  
| <code>SenKam_Stopplinienflag_bit = 0</code><code>SenKam_Stopplinienabstand_f64 = 0</code>
| 1
| 1
| Vollgas
| Vollgas
| 1
| 1
| Tchenko (mit Zustimmung von Prof. Schneider)
| Gosedopp, Wei
| 15.11.2019
| 04.01.2023
|-
|-
| 2
| 2
| Trifft das Fahrzeug bei seiner Rundfahrt an eine Stopp-Kreuzung so muss es 10cm vor der Stopplinie anhalten
| Trifft das Fahrzeug bei seiner Rundfahrt an eine Stopp-Kreuzung so muss es 0.15m vor der Stopplinie anhalten
| SenKam_StoplinienFlag_bit = 1, SenKam_StoplinienAbst_f64 <= 10% Max_Abstand
| <code>SenKam_Stopplinienflag_bit = 1</code>, <code>SenKam_Stopplinienabstand_f64 <= 0.15</code>
| 0
| 0
| Fahrzeug Stoppt  
| Fahrzeug Stoppt  
| 0
| 0
| Tchenko (mit Zustimmung von Prof. Schneider)
| Gosedopp, Wei
| 15.11.2019
| 04.01.2023
|-
|-
| 3
| 3
| Das Fahrzeug fährt weiter, wenn keine Stopplinie erkannt wurde.  
| Das Fahrzeug muss im Bereich zwischen 0.15m und 1m vor der Stopplinie immer langsamer fahren.
| SenKam_StoplinienFlag_bit = 0, SenKam_StoplinienAbst_f64 existiert
| <code>SenKam_Stopplinienflag_bit = 1</code>, <code>15 < SenKam_Stopplinienabstand_f64 <= 100</code>
| 1
| <code>0 < BSFVx_Faktor_f64 < 1 </code>
| Nicht plausibeler Fall. (Da keine Stopplinie erkannt wurde)  
| Bremsen  
| 1
| <code>0 < BSFVx_Faktor_f64 < 1 </code>
| Tchenko (mit Zustimmung von Prof. Schneider)
| Gosedopp, Wei
| 15.11.2019
| 04.01.2023
|-
|-
| 4
| 4
| Das Fahrzeug muss im Bereich zwischen 0.1m und 1m vor der Stopplinie immer langsamer fahren.
| Das Fahrzeug bremst bei eingeleiteter Bremsung weiter ab, auch wenn das Stopplinienflag verloren geht.
| SenKam_StoplinienFlag_bit = 1, 0<SenKam_StoplinienAbst_f64<=10
| <code>SenKam_Stopplinienflag_bit = 0</code>, <code>SenKam_Stopplinienabstand_f64 = 0</code>
| 0<<code>BSFVx_Faktor_i8</code><1 (Linieare Änderung)
| <code> 0 < BSFVx_Faktor_f64 < 1 </code>
| Bremsen   
| Bremsen   
| 0<<code>BSFVx_Faktor_i8</code><1 (Linieare Änderung)
| <code> 0 < BSFVx_Faktor_f64 < 1 </code>
| Tchenko (mit Zustimmung von Prof. Schneider)
| Gosedopp, Wei
| 15.11.2019
| 04.01.2023
|-
|-
| 5
| 5
| Das Fahrzeug muss bei Srtopplinienerkennung im Bereich weiter als 1m weiter normal fahren.
| Das Fahrzeug muss bei Stopplinienerkennung im Bereich weiter als 1m weiter normal fahren.
| SenKam_StoplinienFlag_bit = 0, SenKam_StoplinienAbst_f64>10
| <code>SenKam_Stopplinienflag_bit = 1</code>, <code>SenKam_Stopplinienabstand_f64 > 100</code>
| <code>BSFVx_Faktor_i8</code> = 1
| <code>BSFVx_Faktor_f64 = 1 </code>
| Nicht unterbrochene Fahrt  
| Nicht unterbrochene Fahrt  
| <code>BSFVx_Faktor_i8</code> = 1  
| <code>BSFVx_Faktor_f64 = 1 </code>
| Tchenko (mit Zustimmung von Prof. Schneider)
| Gosedopp, Wei
| 15.11.2019
| 04.01.2023
|-
| 6
| Liegt eine Vorfahrtssituation vor, muss das Fahrzeug solange warten, bis das Hindernis die Kreuzung überquert hat.
| <code>SenKam_Stopplinienflag_bit = 1</code>, <code>SenKam_Stopplinienabstand_f64 <= 15</code>, <code>Vorfahrtssituation_bit = 1</code>
| <code>BSFVx_Faktor_f64 = 0 </code>
| Fahrzeug wartet, bis Hindernis die Kreuzung überquert hat
| <code>BSFVx_Faktor_f64 = 0 </code>
| Gosedopp, Wei
| 04.01.2023
|}
|}
Die Abbildung "Simulationsergebnis unter Berücksichtigung unterschiedlicher Testfälle" steht ferner graphisch dar, wie sich die Werte des <code>BSFVx_Faktor_i8</code> in Abhängigkeit der simulierten Werte für <code>SenKam_StoplinienFlag_bit </code> und <code>SenKam_StoplinienAbst_f64</code> verändert. Dies erfolgt unter Anwendung des entwickelten Moduls zur Steeurung des Fahrzeugsverhaltens an der Stopplinie. (Siehe Abb. 4)


== Fazit ==
Die fehlerfreie Funktionsweise ist zudem im eingefügten Video zu sehen.
Das Modell ist fertig bearbeitet worden und funktioniert gemäß der Anforderungen einwandfrei. Die Entwicklung weiterer Algorithmen ist demmnach möglich, die im Zusammenhang mit dem modellierten Anteil arbeiten. Noch zu erledigen ist die Integration des Software ins reale Fahrzeug, wobei zur reisbungslosen Funktionalität des Modells zusammen mit den anderen Projektkompartimenten einige Anpassungen bezüglich der Kennlinienerkennung noch optimiert werden müssen! Dies umfasst eine der Hauptaufgaben des Teams zur Objekterkennung.
[[Datei:SDE Praktikum 20-21 Stoppkreuzung.gif|none|<b>Abbildung 7: Video der Simulation.</b>]]


[[Datei:Ergebnis_Simulation_1.GIF|mini|700px|Abb. 4: Simulationsergebnis unter Berücksichtigung unterschiedlicher Testfälle.]]
'''Online-Modell: '''
 
{| class="wikitable" style="margin:auto" style="text-align: center;
|+ Tabelle 4: Tests für das Stopplinienverhalten am Fahrzeug.
! style="font-weight: bold;" | ID
! style="font-weight: bold;" | Testfallbeschreibung
! style="font-weight: bold;" | Eingänge
! style="font-weight: bold;" | Ausgang
! style="font-weight: bold;" | Erwartetes Ergebnis
! style="font-weight: bold;" | Testergebnis
! style="font-weight: bold;" | Testperson
! style="font-weight: bold;" | Datum
|-
| 1
| Das Fahrzeug fährt mit der vorgegebenen Geschwindigkeit, wenn keine Stopplinie erkannt wurde.
| <code>SenKam_StoplinienFlag_bit = 0</code>,  <code>SenKam_StoplinienAbst_f64 = 0 </code>
|
| Das Fahrzeug fährt mit Vollgas.
|
|
|
|-
| 2
| Das Fahrzeug muss im Bereich zwischen 0.15m und 1m vor der Stopplinie immer langsamer fahren.
| <code>SenKam_StoplinienFlag_bit = 1</code>, <code>15 < SenKam_StoplinienAbst_f64 <= 100</code>
|
| Fahrzeug bremst ab. 
|
|
|
|-
| 3
| Das Fahrzeug bremst bei eingeleiteter Bremsung weiter ab, auch wenn das Stopplinienflag verloren geht.
| <code>SenKam_StoplinienFlag_bit = 0</code>, <code>SenKam_StoplinienAbst_f64 = 0</code>
|  
| Fahrzeug bremst ab.
|
|
|
|-
| 4
| Trifft das Fahrzeug bei seiner Rundfahrt an eine Stopp-Kreuzung so muss es 0.15m vor der Stopplinie anhalten
| <code>SenKam_StoplinienFlag_bit = 1</code>, <code>SenKam_StoplinienAbst_f64 <= 0.15</code>
|
| Fahrzeug stoppt vollständig.
|
|
|
|-
| 5
| Das Fahrzeug muss bei Stopplinienerkennung im Bereich weiter als 1m weiter normal fahren.
| <code>SenKam_StoplinienFlag_bit = 1</code>, <code>SenKam_StoplinienAbst_f64 > 100</code>
|
| Fahrzeug bremst nicht ab.
|
|
|
|-
| 6
| Liegt eine Vorfahrtssituation vor, muss das Fahrzeug solange warten, bis das Hindernis die Kreuzung überquert hat.
| <code>SenKam_Stopplinienflag_bit = 1</code>, <code>SenKam_Stopplinienabstand_f64 <= 15</code>, <code>Vorfahrtssituation_bit = 1</code>
|
| Fahrzeug wartet, bis Hindernis die Kreuzung überquert hat
|
|
|
|}


<onlyinclude><div style="clear:{{{{{|safesubst:}}}#switch:{{{1}}}
| links|left = left
| rechts|right = right
| #default = both
}};"></div></onlyinclude>


== Diskussion ==
== Simulation einer Vorfahrtssituation ==
Design-Review des Konzept


ACHTUNG! Die lauffähige Version wurde noch nicht in den trunk übertragen, da im Online-Modell noch keine Objektliste vorhanden ist. Dies würde die Software unkompilierbar machen! Die Ergebnisse finden sich allesamt in [https://svn.hshl.de/svn/MTR_SDE_Praktikum/branches/2022_12_14_OSE_Stopplinienverhalten/ diesem Branch]


Um eine Vorfahrtssituation zu simulieren, muss ein dynamisches Hindernis genau dann auf die Kreuzung zu fahren, wenn das CCF ebenfalls darauf zufährt oder schon da steht. Dazu müssen folgende Maßnahmen getroffen werden:


----
In der <code>start.m</code>-Datei muss als Simulinkmodus 4 und <code>PAR_Modi_Schalter_Fahrbahn_int = 1</code> gewählt werden. Dann muss in dem switch-case, wo der Simulinkmodus abgefragt wird, in Zustand 4 die Startposition des CCF auf
→ zurück zur Übersicht: [[SDE-Team_2019/20]]<br/>
<code>PAR_Esm_x0_I_f64  = 5.04;        % Startposition in x_I</code>
→ zurück zur Übersicht: [[SDE-Team_2020/21]]<br/>
<code>PAR_Esm_y0_I_f64  = 0.5441;      % Startposition in y_I</code>
<code>PAR_Esm_psi0_I_f64 = 145 * pi/180; % Startausrichtung zu x_I</code>
gesetzt werden. Nun beginnt die Fahrt in der Kurve vor der Kreuzung. Anschließend muss ein passendes Hindernis in der Simulation platziert werden. Hierzu muss in der Parameterdatei <code>param_OSE_offline.m</code> ein Hindernis mit Index <code>aIndex = 368</code> auf Fahrbahn 2 hinzugefügt werden. Danach kann die Simulation gestartet werden.

Aktuelle Version vom 9. Januar 2023, 20:02 Uhr

Autoren: Hagen Heuer, Tim Kruse
Bearbeitet: Daniel Gosedopp, Ran Wei
Betreuer: Prof. Schneider, Prof. Göbel

Einleitung

Ziel ist es, das Verhalten des Fahrzeugs an Stopplinien entsprechend den Anforderungen im Lastenheft zu implementieren. Das Fahrzeug muss nach dem Lastenheft im Falle der Erkennung einer Haltelinie immer langsamer fahren. Befindet sich es an der Stopplinie, so muss es dort stoppen und zwei Sekunden halten. Liegt eine Vorfahrtssituation vor, muss dem Hindernis Vorfahrt gewährt und erst dann weitergefahren werden.

Anforderungen

Im Lastenheft des Projekts Carolo Cup wird die Anforderung an das Verhalten des Fahrzeugs an einer Stopplinie in REQ10.2340 festgehalten (s. Abbildung 1).

Die Umsetzung der Anforderung ist im Pflichtenheft wie folgt festgehalten:

Folgende Anforderungen können festgelegt werden und im späteren Projekt berücksichtigt werden.

  • Trifft das Fahrzeug bei seiner Rundfahrt an eine Stopp-Kreuzung, so muss es 15 cm vor der Stopplinie anhalten.
  • Während das Fahrzeug auf die Stopplinie zufährt, muss die Geschwindigkeit des Fahrzeugs gedrosselt werden.
  • Das Fahrzeug muss vor der Stoppline halten und 2 Sekunden warten.
  • Nach der Wartezeit muss das Fahrzeug die Kreuzung passieren, ohne das die Stopplinie ein weiteres Mal erkannt wird.
  • Die Implementierung erfolgt in Matlab-Simulink.

Konzept

Als Basis für die Implementierung diente die vorhandene MATLAB-Funktion für das Verhalten an Stopplinien. Beim Testen dieser Funktion viel unter anderem auf, dass diese nicht lauffähig ist. Außerdem war die Implementierung der Weiterfahrt nach einer Stopplinie fehlerhaft, da das Fahrzeug die vorherige Stopplinie erneut erkennen würde. Daher wurde ein neues Konzept erstellt, in dem Teile der ursprünglichen Idee berücksichtigt wurden. Zunächst werden die externen Ein- und Ausgänge des Moduls definiert:

Grundidee

Das Modul BSF ermittelt unter anderem die Sollgeschwindigkeit des Fahrzeugs. Dies geschieht entweder auf Basis der Kurvenkrümmung oder wird bei Vorhandensein eines Hindernisses als konstant angenommen. Die Grundidee ist es, die Sollgeschwindigkeit bei Erkennung einer Stopplinie mit einem Faktor (Werte von 0 - 1) zu multiplizieren, also immer weiter zu verringern, bis das Fahrzeug 15cm vor der Linie stillsteht. Der Stillstand soll für zwei Sekunden beibehalten werden. Danach soll das Fahrzeug mit unveränderter Sollgeschwindigkeit weiterfahren (Faktor = 1). Den Verlauf des Faktorwertes zeigt Abb. 3.

Am Anfang ist der Faktor 1, bis eine Stopplinie erkannt wird. Dann verringert er sich kontinuierlich, bis zum Wert 0, sodass das Auto immer langsamer wird und schließlich 15cm vor der Stopplinie zum Stillstand kommt. Hier wird für zwei Sekunden gewartet. Danach wird der Faktor wieder auf 1 gesetzt, sodass wieder auf errechnete Sollgeschwindigkeit beschleunigt wird.

Festlegung von Ein- und Ausgängen

Zur Umsetzung der Funktion werden zunächst die Ein- und Ausgänge festgelegt. Diese zeigt Tab. 1.

Tabelle 1: Ein- und Ausgangsvariablen
Art Variablenname Beschreibung Einheit
Eingang SenKam_Stopplinienabstand_f64 Abstand von Fahrzeugfront zur Stopplinie m
Eingang SenKam_Stopplinienflag_bit Gesetzt, wenn eine Stopplinie erkannt wird -
Eingang Vorfahrtssituation_bit Gesetzt, wenn ein Hindernis an der Kreuzung steht. -
Eingang T Zykluszeit der Simulation s
Ausgang BsfVx_Faktor_f64 Geschwindigkeitsbegrenzungsfaktor, falls Stopplinie erkannt wurde -

Programmablauf

Das Programm wird als Zustandsautomat realisiert, dessen Zustandsdiagramm Abbildung 3 zeigt.

Zu Beginn werden Variablen eingelesen und initialisiert. Anschließend erfolgt die Abfrage des Zustands. Das Programm wird hierbei in vier Zustände unterteilt.

Zustand 1 - Auf Stopplinie warten
Im ersten Zustand werden zunächst Variablen an den Ausgang übergeben. Anschließend wird abgefragt, ob das Stopplinienflag 1 ist. Trifft dies zu wird der Zustand auf 2 gesetzt. Wurde keine Stopplinie gefunden, so wird der Zustand nicht gewechselt.

Zustand 2 - Abbremsen nach Stopplinienerkennung
In diesem Zustand wird abgebremst. Ist der Stopplinienabstand kleiner als 15cm, werden die Motoren abgeschaltet und der Zustand auf 3 gesetzt.

Zustand 3 - An Stopplinie warten
In diesem Zustand wird an der Stopplinie gewartet. Liegt keine Vorfahrtssituation vor, beträgt die Wartezeit 2 Sekunden, ansonsten wird solange gewartet, bis das Hindernis die Kreuzung passiert hat.

Zustand 4 - Kreuzung überfahren Hier wird solange gefahren, bis die Stopplinie überquert wurde, der Stopplinienabstand also <= 0 ist. Dies ist nötig, damit die Stopplinie nicht als neue Stopplinie erkannt wird und das Farzeug erneut anhält. Danach wechselt der Automat wieder in den ersten Zustand.

Umsetzung und Ergebnis der Simulation

Die Implementierung des Algorithmus erfolgt in Simulink als Stateflow Chart. Diese wurde nach dem Zustandsdiagramm aus Abbildung 3 aufgebaut. Der Zustandsautomat besitzt als Eingang den Stopplinienabstand. Die Kamera kann die Stopplinie aber nur bis ca. 52cm vor dem Auto sehen, sodass dieser bei Zufahrt auf die Kreuzung interpoliert werden muss. Dies geschieht im Subsystem "Berechnung_Stopplinienabstand". Um zu prüfen, ob eine Vorfahrtssituation vorliegt, muss auf die LiDAR-Objektliste zugegriffen werden. Das passiert im Subsystem "Überprüfung_Vorfahrtssituation". Im Lastenheft findet sich eine Abbildung, die zeigt, welche Bedingung zur Einleitung einer Vorfahrtssituation erfüllt sein muss. Wenn die Bedingung erfüllt ist, wird das "Vorfahrtssituation_bit" gesetzt.

Das Ergebnis des Stopplinienverhalten wird in der nachfolgenden Abbildung dargestellt.

Im ersten Diagramm ist das Stopplinienflag zu sehen, welches bei Detektion einer Stopplinie auf Eins wechselt.

Im zweiten Diagramm ist der dazugehörige Stopplinienabstand zu sehen. Dieser ist solange Null, bis eine Stopplinie erkannt wurde. Die Stopplinie kann ab einem Abstand von einem Meter oder weniger erfasst werden. Am Verlauf ist zudem gut zu erkennen, dass das Fahrzeug beginnt zu verzögern, da der Abstand nicht linear abnimmt. Nach der zweisekündigen Wartezeit beschleunigt das Fahrzeug wieder und der Abstand zur Stopplinie nimmt linear weiter ab. Erreicht dieser Null, so wird die Stopplinie überfahren.

Im letzten Diagramm wird die errechnete Sollgeschwindigkeit ausgegeben. Auch an dieser Kurve ist gut zu sehen, dass das Fahrzeug verzögert. Wenn der Abstand 15 cm oder weniger beträgt, werden die Motoren abgeschaltet, da der Faktor auf Null abfällt.

Unit-Test & Integrations-Test

Im Folgenden sind die einzelnen Testfälle für den Unit- und Integrations-Test im Offline- und Online-Modell zu sehen.

Offline-Modell: Durch die Eingabe von Parametern konnten folgende Testfälle in der Simulation geprüft werden.

Tabelle 3: Tests für das Stopplinienverhalten in der Simulation.
ID Testfallbeschreibung Eingänge Ausgang Erwartetes Ergebnis Testergebnis Testperson Datum
1 Das Fahrzeug fährt mit der vorgegebenen Geschwindigkeit, wenn keine Stopplinie erkannt wurde. SenKam_Stopplinienflag_bit = 0, SenKam_Stopplinienabstand_f64 = 0 1 Vollgas 1 Gosedopp, Wei 04.01.2023
2 Trifft das Fahrzeug bei seiner Rundfahrt an eine Stopp-Kreuzung so muss es 0.15m vor der Stopplinie anhalten SenKam_Stopplinienflag_bit = 1, SenKam_Stopplinienabstand_f64 <= 0.15 0 Fahrzeug Stoppt 0 Gosedopp, Wei 04.01.2023
3 Das Fahrzeug muss im Bereich zwischen 0.15m und 1m vor der Stopplinie immer langsamer fahren. SenKam_Stopplinienflag_bit = 1, 15 < SenKam_Stopplinienabstand_f64 <= 100 0 < BSFVx_Faktor_f64 < 1 Bremsen 0 < BSFVx_Faktor_f64 < 1 Gosedopp, Wei 04.01.2023
4 Das Fahrzeug bremst bei eingeleiteter Bremsung weiter ab, auch wenn das Stopplinienflag verloren geht. SenKam_Stopplinienflag_bit = 0, SenKam_Stopplinienabstand_f64 = 0 0 < BSFVx_Faktor_f64 < 1 Bremsen 0 < BSFVx_Faktor_f64 < 1 Gosedopp, Wei 04.01.2023
5 Das Fahrzeug muss bei Stopplinienerkennung im Bereich weiter als 1m weiter normal fahren. SenKam_Stopplinienflag_bit = 1, SenKam_Stopplinienabstand_f64 > 100 BSFVx_Faktor_f64 = 1 Nicht unterbrochene Fahrt BSFVx_Faktor_f64 = 1 Gosedopp, Wei 04.01.2023
6 Liegt eine Vorfahrtssituation vor, muss das Fahrzeug solange warten, bis das Hindernis die Kreuzung überquert hat. SenKam_Stopplinienflag_bit = 1, SenKam_Stopplinienabstand_f64 <= 15, Vorfahrtssituation_bit = 1 BSFVx_Faktor_f64 = 0 Fahrzeug wartet, bis Hindernis die Kreuzung überquert hat BSFVx_Faktor_f64 = 0 Gosedopp, Wei 04.01.2023

Die fehlerfreie Funktionsweise ist zudem im eingefügten Video zu sehen.

Abbildung 7: Video der Simulation.
Abbildung 7: Video der Simulation.

Online-Modell:

Tabelle 4: Tests für das Stopplinienverhalten am Fahrzeug.
ID Testfallbeschreibung Eingänge Ausgang Erwartetes Ergebnis Testergebnis Testperson Datum
1 Das Fahrzeug fährt mit der vorgegebenen Geschwindigkeit, wenn keine Stopplinie erkannt wurde. SenKam_StoplinienFlag_bit = 0, SenKam_StoplinienAbst_f64 = 0 Das Fahrzeug fährt mit Vollgas.
2 Das Fahrzeug muss im Bereich zwischen 0.15m und 1m vor der Stopplinie immer langsamer fahren. SenKam_StoplinienFlag_bit = 1, 15 < SenKam_StoplinienAbst_f64 <= 100 Fahrzeug bremst ab.
3 Das Fahrzeug bremst bei eingeleiteter Bremsung weiter ab, auch wenn das Stopplinienflag verloren geht. SenKam_StoplinienFlag_bit = 0, SenKam_StoplinienAbst_f64 = 0 Fahrzeug bremst ab.
4 Trifft das Fahrzeug bei seiner Rundfahrt an eine Stopp-Kreuzung so muss es 0.15m vor der Stopplinie anhalten SenKam_StoplinienFlag_bit = 1, SenKam_StoplinienAbst_f64 <= 0.15 Fahrzeug stoppt vollständig.
5 Das Fahrzeug muss bei Stopplinienerkennung im Bereich weiter als 1m weiter normal fahren. SenKam_StoplinienFlag_bit = 1, SenKam_StoplinienAbst_f64 > 100 Fahrzeug bremst nicht ab.
6 Liegt eine Vorfahrtssituation vor, muss das Fahrzeug solange warten, bis das Hindernis die Kreuzung überquert hat. SenKam_Stopplinienflag_bit = 1, SenKam_Stopplinienabstand_f64 <= 15, Vorfahrtssituation_bit = 1 Fahrzeug wartet, bis Hindernis die Kreuzung überquert hat


Simulation einer Vorfahrtssituation

ACHTUNG! Die lauffähige Version wurde noch nicht in den trunk übertragen, da im Online-Modell noch keine Objektliste vorhanden ist. Dies würde die Software unkompilierbar machen! Die Ergebnisse finden sich allesamt in diesem Branch

Um eine Vorfahrtssituation zu simulieren, muss ein dynamisches Hindernis genau dann auf die Kreuzung zu fahren, wenn das CCF ebenfalls darauf zufährt oder schon da steht. Dazu müssen folgende Maßnahmen getroffen werden:

In der start.m-Datei muss als Simulinkmodus 4 und PAR_Modi_Schalter_Fahrbahn_int = 1 gewählt werden. Dann muss in dem switch-case, wo der Simulinkmodus abgefragt wird, in Zustand 4 die Startposition des CCF auf PAR_Esm_x0_I_f64 = 5.04;  % Startposition in x_I PAR_Esm_y0_I_f64 = 0.5441;  % Startposition in y_I PAR_Esm_psi0_I_f64 = 145 * pi/180; % Startausrichtung zu x_I gesetzt werden. Nun beginnt die Fahrt in der Kurve vor der Kreuzung. Anschließend muss ein passendes Hindernis in der Simulation platziert werden. Hierzu muss in der Parameterdatei param_OSE_offline.m ein Hindernis mit Index aIndex = 368 auf Fahrbahn 2 hinzugefügt werden. Danach kann die Simulation gestartet werden.