[image: image13.jpg]International Education Network —a PHOENIX CONTACT Initiative E d u N et

PWM fan speed control via RS-232 interface on ILC 130
Andrey Burtsev
Department of Automation, Electronics

 and Computer Science
VPI (branch of) VSTU

 Russian Federation
1. Pulse Width Modulation (PWM) principle.

Pulse-width modulation (PWM) is a technique used to control the mean voltage value of load by change the width of square waves. Its main use is to allow the control of the power supplied to electrical devices, especially to inertial loads such as motors[1].
[image: image14.png]1 TYPE

2 T RS232 : STRUCT

3 protocol :INT; (* 0: transparent, data transmission without protocol
4 baudrate :INT; (% 3: 1200kBit, 5: 2400kBit, 6: 4800kBit, 7: 9600kBit,
5 databits :INT; (* 4: 8 data bits, even parity *)

6 stopbits DINT; (% 1: 1 stop bit *)

7 flowcontrol :INT; (* 0: not supported *)

8 error_pattern :INT; (* not supported *)

9 first delimiter :INT; (* not supported *)
10 second_delimiter:INT; (* not supported *)
11 XON_pattern :INT; (* not supported *)
12 XOFF_pattern :INT; (* not supported *)
13 END_STRUCT;

14 END_TYPE

15

16 TYPE

17 Tmessage : array [1..8] of BYTE;

18 END_TYPE

Fig.1 - Duty cycle of PWM

The duty cycle is the amount of time (t) that the period is in a logic 1 state, divided by the period (T) of the wave. The period (T) is the duration of one cycle, also known as wavelength.

The duty cycle therefore describes a fraction of the cycle for which the square wave is in the logic 1 state. When you multiply this value by 100, you get the duty cycle value in terms of a percentage.

Duty Cycle = (t / T) × 100
For example, if the period (T) of the signal was 2 seconds, and the duration of the logic 1 state (t) was 1 second, then the following expression gives the duty cycle in percentage [2].

(1 / 2) × 100 = 50 %
On Fig.2 you can see three PWM signals with different duty cycles (10%, 50%, 90%). For example, if you have 24 V power supply you get 2.4 V, 12 V and 21.6 V on your motor respectively.
[image: image2.jpg]

Fig.2 - Three PWM signals with different duty cycles

Therefore the PWM technique is used for imitation the analog signal by digital output of controller.

2. Lab equipment

According to Fig.3 we connect the 24 V fan to the first digital output of ILC 130 ETH directly.
[image: image3.png]ILC 130 ETH
Sk T -

EEEd

ES oo

oo oo
l0000(00|
0|oo|oo)
100/00(00|
/oo o)
I0000(00|
o0oo|oo|
I00l00I00|

o[[[H{[[o
o][[HTo

Fig.3 - The lab equipment connection

The nominal current of the fan is 0.2 Amps. If you have more powerful fan you should use intermediate control module (transistor or another).
The PWM switching frequency has to be much higher than what would affect the load (the device that uses the power), which is to say that the resultant waveform perceived by the load must be as smooth as possible [2].
In our case the PWM switching frequency is limited by cycle period of controller which equals or more than 1 ms. Practically the frequency 100 Hz is enough for quite smooth control of fan speed. This frequency corresponds to 10 ms PWM period. If the PLC cycle is 1 ms we get 10 gradations of fan speed.

Note: for higher PWM frequency you should use the special PWM module from Phoenix Contact like IB IL PWM/2-PAC [3].
The task: to create a program for control the fan speed smoothly by one of two channels:

- from potentiometer on ILC 130 ETH Starter Kit board;

- from PC via RS-232 interface.

Switching between two modes must perform by 0 switch of the Starter Kit board.

3. The PWM user function block on ST and FBD.
The simple function block for PWM is shown on the Fig.4:

[image: image4.png]PWM_st
Speed Puse

Fig. 4 - User PWM function block

Speed - speed of fan (integer value from 0 to 9); Pulse - logical output, the series of pulses (BOOL type).

The program code on ST:

[image: image5.png]newbh e

ci=c+l;

if c=10 then ; end_if;

if c<Speed then Puls
else Pulse:=false;

end if;

The same algorithm on FBD:

[image: image6.png][ng

The variables table:

[image: image7.png]Name Type. Usage | Description
= Default
Spesd NT VAR NP [input
Puise BOOL VAR OU... | output
c INT VAR counter

Note: if you insert this block in program (for example Main program) the PWM frequency is equals to call period of the program. For default task (Main program) call period will depend on the quantity of another tasks.

4. Implementation of RS-232 connection between ILC 130 and PC.

Standart function blocks for RS-232 communication in PC Worx are RS232_INIT, RS232_SEND, RS232_RECEIVE. For detail information about inputs/outputs of these blocks read the Help of PC Worx or the document [4].

Below on Fig.5 you can see FBD code of program for RS-232 communication:

[image: image8.png]REQUEST

Messaget- DATA

ONBOARD_INPUT_BIT!

RUN Out
TmeLow
TmeHigh

RMessa

8 DATA_COUNT

Rs232_SeND_ 1
- DONEf——cone.
ERROR|—er2
staTUs| otz
SEND_BUFFR_COUNT[—count
BUFFER_EMPTY| e

(*After RS232 init try to recieve data every second®)

RS232_RECEIVE 1

BUFFER NOT_EWPTY|

BUFFER_FULL

RECEIVE_BUFFER_COUNT
DATA_COUNT|
DAT

ONBOARD_INPUT_BITO

(*Rs-232 format: 9600 8-1-even®)

0——panms.potocol
params.baudate

4————params.databits

0——panams.stopbits

0———params.fowcontrol

RS232_NIT_1
RS232INTT
ENABLE

params—{ PARAMETER ERROR|

STATUS|

(#Strng_to_buffer help us to send a string via RS232%)

Message_str-

Messagel[1]:
|

BUFFER
BUF_LEN

STR_IN STRING_TO_BUFFER|

Fig.5 - Program for RS-232 communication
Description of the program.

In this fragment:

[image: image9.png]0————params.pmtocol

7————paramsbaudrate
4————params.databits
00— params.stopbits

0——params.fowcontrol

we set the parameters of RS-232 interface: baudrate - 9600, data bits - 8, one stop bit, parity check: even. Params is a name of structure. Type of this structure (T_RS232) with special fields must be initialized in Data Types unit:

[image: image1.png]ON

.
A | oFF

0

T - period of PWM (wavelength)
T/A - duty cycle

After ONBOARD_INPUT_BIT0 switch is set TRUE several actions begin:

- RS232_INIT block initializes RS-232 interface with params structure;

- RS232_SEND block sends a message (Message1) to PC. This block can only send the array of bytes. But if we want to send a text string it is more comfortable to use a STRING type. STRING_TO_BUFFER function helps us to convert a string Message_str to array of bytes Message1. In this example Message_str is assigned a value "Command:".
- RS232_RECEIVE block every second (managed by pulse generator MUV) tries to read the input buffer of RS-232. If successful received data is written to RMessage array. Further in Main program we will use only the first element of RMessage array.
Note: this FBD program is assigned to particular cyclic task in PC Worx with time interval 500 ms.

5. The Main program

The main program is shown below on Fig.6. You can see two channels for fan speed control: by RS-232 commands or from potentiometer on the board.
[image: image10.png]control from
potentiometer

AnzlogRead_1 PWM_fod_1 connected
(AnalgRead)| (PWTBA to fan
1.0_1 AL 1 VOLTAGE—] AINiSpeed SpeedPulse

0

| —ONBOARD_OUTPUT_BITO

control by
RS-232

Fig. 6 - The Main program
The variable ONBOARD_INPUT_BIT0 selects the channel for speed control. It is provided by AND functions (Fig.6).

The function block SUB subtracts the number 48 from RMessage[1] element. It is need for convert the ASCII code of character to the number its mean. The block LIMIT limits the value of speed. The correct value must be in range [0..9].

User Function Block AnalogRead reads the voltage from potentiometer and scales it to the range [0..9]. The implementation of the block on FBD:

[image: image11.png]AND SAR WORD_TO_REAL
AINI- N
WORD#3276(N
MUL DIV _TO_Tl

10.

4096..

L Speed

Fig.7 - Function block AnalogRead
The constant WORD#32760 is a mask. It is used to clear all unused bits and get the value from the IB IL AI2/SF-ME format [5].

6. Test of the whole program

To test the whole program you need to connect ILC 130 Starter Kit board to PC as shown in Fig. 3. Also you should connect the 24V fan to first onboard digital input. To test RS-232 data exchange install on your computer any of serial port terminal (Putty, HyperTerminal, Advanced Serial Port Monitor or another).

After downloading the program into PLC try to rotate the potentiometer. Speed of the fan must change smoothly.

Launch your terminal program on PC and open the COM port. Turn on the first switch on the board (number 0). After that the terminal receive string "Command:". Type the desired speed of fan, for example '5'. Send it to PLC. The fan speed must change.

In screenshot you can see the dialog between PC and PLC:

[image: image12.png]

7. References:

1) Pulse-width_modulation. Wikipedia. Available: http://en.wikipedia.org/ wiki/Pulse-width_modulation

2) PWM: Pulse Width Modulation Principle. Available: http://www.petervis.com/ Raspberry_PI/Raspberry_Pi_Motor_Controller_L6203/PWM_Modulation_Principle.html.
3) IB IL PWM/2 (-PAC). Inline Function Terminal for Pulse Width Modulation and Frequency Modulation. Data Sheet. Phoenix Contact GmbH & Co, Blomberg, Germany.
4) Installing and operating the ILC 130 ETH, ILC 150 ETH, ILC 155 ETH and, ILC 170 ETH 2TX Inline Controllers. User Manual. Phoenix Contact GmbH & Co, Blomberg, Germany.
5) IB IL AI 2/SF-ME . Inline Terminal With Two Analog Input Channels. Data Sheet 703700. Phoenix Contact GmbH & Co, Blomberg, Germany.

Volzhsky Politechnical Institute (branch of VSTU)
Volzhsky, Russian Federation

[image: image13.jpg]