MediaWiki-API-Ergebnis
This is the HTML representation of the JSON format. HTML is good for debugging, but is unsuitable for application use.
Specify the format parameter to change the output format. To see the non-HTML representation of the JSON format, set format=json.
See the complete documentation, or the API help for more information.
{
"batchcomplete": "",
"continue": {
"lecontinue": "20260209162846|35175",
"continue": "-||"
},
"query": {
"logevents": [
{
"logid": 35185,
"ns": 6,
"title": "Datei:Grannt chart.png",
"pageid": 17044,
"logpage": 17044,
"revid": 147028,
"params": {},
"type": "create",
"action": "create",
"user": "Ajay.paul@stud.hshl.de",
"timestamp": "2026-02-18T12:13:29Z",
"comment": ""
},
{
"logid": 35184,
"ns": 6,
"title": "Datei:Grannt chart.png",
"pageid": 17044,
"logpage": 17044,
"revid": 147028,
"params": {
"img_sha1": "otj6p2qwzdz22jkthqv0ghdha3bx37h",
"img_timestamp": "2026-02-18T12:13:29Z"
},
"type": "upload",
"action": "upload",
"user": "Ajay.paul@stud.hshl.de",
"timestamp": "2026-02-18T12:13:29Z",
"comment": ""
},
{
"logid": 35183,
"ns": 6,
"title": "Datei:Tastenfeld.jpg",
"pageid": 13243,
"logpage": 13243,
"revid": 147023,
"params": {
"img_sha1": "awc0ktniw0w4m86f4wo65k9maupeuob",
"img_timestamp": "2026-02-17T13:01:17Z"
},
"type": "upload",
"action": "overwrite",
"user": "Ulrich.schneider@hshl.de",
"timestamp": "2026-02-17T13:01:17Z",
"comment": ""
},
{
"logid": 35182,
"ns": 0,
"title": "Arduino Projekt: Bankautomat",
"pageid": 17043,
"logpage": 17043,
"revid": 147020,
"params": {},
"type": "create",
"action": "create",
"user": "Ulrich.schneider@hshl.de",
"timestamp": "2026-02-17T12:38:25Z",
"comment": "Die Seite wurde neu angelegt: \u201e[[Datei:TMP36-comes-in-both-a-three-pin-package.jpg|thumb|rigth|300px|Abb. 1: Pinbelegung des Temperatursensors TMP36 von Analog Devices]] [[Kategorie:Open Roberta Lab]] {|class=\"wikitable\" |- | '''Autor:''' || [[Benutzer:Ulrich_Schneider| Prof. Dr.-Ing. Schneider]] |- | '''Projekt:''' || Temperaturmessung |- | '''Termin:''' || 20.01.2026 |} = Einleitung = Es gibt 4 M\u00f6glichkeiten im Bausatz die Temperatur zu messen: * Temperatursensor_NTC_MF58_3950_\u2026\u201c"
},
{
"logid": 35181,
"ns": 0,
"title": "Vision Transformers (ViT)",
"pageid": 17042,
"logpage": 17042,
"revid": 147000,
"params": {},
"type": "create",
"action": "create",
"user": "Ajay.paul@stud.hshl.de",
"timestamp": "2026-02-11T13:07:22Z",
"comment": "Die Seite wurde neu angelegt: \u201e**Vision Transformers (ViT)** A new change in the field is the Vision Transformer (ViT). Instead of using the normal convolution layers like CNNs, ViT use the Transformer model, which was first made for Natural Language Processing (NLP). The image is cut into small fixed-size patches, then each patch is turned into a vector and treated like a token. After that, it is processed using self-attention mechanism. **Global Context:** Unlike CNNs that first lo\u2026\u201c"
},
{
"logid": 35180,
"ns": 0,
"title": "EfficientNet: For scalability",
"pageid": 17041,
"logpage": 17041,
"revid": 146998,
"params": {},
"type": "create",
"action": "create",
"user": "Ajay.paul@stud.hshl.de",
"timestamp": "2026-02-11T13:04:32Z",
"comment": "Die Seite wurde neu angelegt: \u201e== EfficientNet: For scalability == EfficientNet use something called compound scaling. It scale the network\u2019s width, depth, and resolution all together in a balanced way. Instead of just making the network deeper like ResNet, or wider only, EfficientNet try to find the best balance between them. Because of this, it can reach higher accuracy with less parameters and less FLOPs (Floating Point Operations).<ref name=\"Joshua2025\">Joshua, Chidiebere & Kotsi\u2026\u201c"
},
{
"logid": 35179,
"ns": 0,
"title": "MobileNetV2: Efficiency for Edge Computing",
"pageid": 17040,
"logpage": 17040,
"revid": 146982,
"params": {},
"type": "create",
"action": "create",
"user": "Ajay.paul@stud.hshl.de",
"timestamp": "2026-02-10T15:11:41Z",
"comment": "Die Seite wurde neu angelegt: \u201eFor cases where computing power is limited, like mobile apps or embedded devices, MobileNetV2 is usually the best choice. It use something called \u201cdepthwise separable convolutions,\u201d which break one big convolution into two smaller steps. This reduce the number of parameters and calculations by alot. **Inference Speed:** MobileNetV2 is made to be fast. In test benchmarks, it can run inference in about 15ms per image, which is much faster then most Res\u2026\u201c"
},
{
"logid": 35178,
"ns": 0,
"title": "The Residual Network (ResNet) Standard",
"pageid": 17039,
"logpage": 17039,
"revid": 146978,
"params": {},
"type": "create",
"action": "create",
"user": "Ajay.paul@stud.hshl.de",
"timestamp": "2026-02-10T12:20:54Z",
"comment": "Die Seite wurde neu angelegt: \u201eResNet, also called Residual Network, is a very important model in deep learning history. Before ResNet, training very deep neural networks was really hard because of the vanishing gradient problem. This means the signal used to update the weights become very small as it move backward through many layers. ResNet fixed this problem by adding skip connections, also known as shortcuts. These connections let the gradient flow around some layers instead of pa\u2026\u201c"
},
{
"logid": 35177,
"ns": 0,
"title": "12.02.2026 - MINT-Tag Kreis Soest - Mechatronik - Educational Escape Games",
"pageid": 17038,
"logpage": 17038,
"revid": 146965,
"params": {},
"type": "create",
"action": "create",
"user": "Ulrich.schneider@hshl.de",
"timestamp": "2026-02-10T10:49:14Z",
"comment": "Die Seite wurde neu angelegt: \u201e[[Datei:Vishnu-mohanan-vtg8tAdoWVQ-unsplash.jpg|thumb|rigth|450px|Abb. 1: Mechatronische Projekte mit dem Arduino]] {| class=\"wikitable\" |- | '''Autor:''' || [[Benutzer:Ulrich_Schneider| Prof. Dr.-Ing. Schneider]] |- | '''Termin:''' || 12.02.2026, 13:00 - 14:30 Uhr |- | '''Raum:''' || L3.1-E02-180 (Labor Robotik) |- | '''Thema:''' || Mechatronik Workshop \"Mikrocontroller\" |- | '''Teilnehmende:''' || Gruppe D: 14 SuS im Alter von 15-17 Ja\u2026\u201c"
},
{
"logid": 35176,
"ns": 6,
"title": "Datei:LuftballonFahrzeug 206668 de.pdf",
"pageid": 17037,
"logpage": 17037,
"revid": 146958,
"params": {},
"type": "create",
"action": "create",
"user": "Ulrich.schneider@hshl.de",
"timestamp": "2026-02-09T16:28:46Z",
"comment": ""
}
]
}
}